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Eigendecomposition and Diagonalization

Definition

A matrix A ∈ Rn×n is diagonalizable if it is similar to a diagonal matrix,
i.e. there exists a matrix P ∈ Rn×n so that

D = P−1AP,

(equivalently AP = PD or A = PDP−1) where D =

λ1 . . . 0
...

. . .
...

0 . . . λn



V. Mikayelyan Math for ML August 4, 2020 2 / 18



Eigendecomposition and Diagonalization

Proposition

If D ∈ Rn×n is a diagonal matrix with diagonal entries λ1, . . . , λn, then

AP = PD

for invertible matrix P if and only if λ1, . . . , λn are the eigenvalues of A
and the pi are the corresponding eigenvectors of A, where P = [p1 . . .pn].
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Theorem

A symmetric matrix S = ST ∈ Rn×n can be diagonalized into

S = PDP T

where P is matrix of n orthogonal eigenvectors,i.e. P T = P−1,
and D is a diagonal matrix of its n eigenvalues.

Example

Compute the eigendecomposition of a (symmetric) matrix A =

[
5 3
3 5

]

Proposition

If A = PDP−1, then Ak = PDkP−1 for any k ∈ N , and

Dk =

λ
k
1 . . . 0
...

. . .
...

0 . . . λkn


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4.4 Eigendecomposition and Diagonalization 115

Figure 4.6 Intuition
behind the
eigendecomposition
of a A ∈ R2×2 in
the standard basis
as sequential
transformations.
Top-left to
bottom-left: P>

performs a basis
change (here drawn
in R2 and depicted
as a rotation-like
operation) mapping
the eigenvectors
into the standard
basis. Bottom-left-
to-bottom right D
performs a scaling
along the remapped
orthogonal
eigenvectors,
depicted here by a
circle being
stretched to an
ellipse. Bottom-left
to top-left: P
undoes the basis
change (depicted as
a reverse rotation)
and restores the
original coordinate
frame.

Example 4.9
Let us compute the eigendecomposition of a (symmetric) matrix A =[
2 1
1 2

]
.

Step 1: Compute the eigenvalues and eigenvectors
The matrix has eigenvalues

det(A− λI) = det

([
2− λ 1

1 2− λ

])
(4.63)

= (2− λ)2 − 1 = λ2 − 2λ+ 3

= (λ− 3)(λ− 1) = 0. (4.64)

So the eigenvalues of A are λ1 = 1 and λ2 = 3 and the associated nor-
malized eigenvectors are obtained via[

2 1
1 2

]
p1 = 1p1 (4.65)

[
2 1
1 2

]
p2 = 3p2 . (4.66)

c©2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.

Top-left to bottom-left: P−1 performs a basis change (here drawn in
R2 and depicted as a rotation-like operation), mapping the
eigenvectors into the standard basis.

Bottom-left to bottom-right: D performs a scaling along the
remapped orthogonal eigenvectors, depicted here by a circle being
stretched to an ellipse.

Bottom-right to top-right: P undoes the basis change (depicted as a
reverse rotation) and restores the original coordinate frame.
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Singular Value Decomposition (SVD)

Theorem

Let A ∈ Rm×n be a rectangular matrix of rank r, with r ∈ [0,min(m,n)].
The Singular Value Decomposition or SVD of A is a decomposition of A
of the form

A = UΣV T

where U ∈ Rm×m is an orthogonal matrix of column vectors ui,
and V ∈ Rn×n is an orthogonal matrix of column vectors vj
and Σ is an m× n matrix with Σii = σi > 0 and Σij = 0, i 6= j.
The SVD is always possible for any matrix A.

The σi are called the singular values, and by convention the singular values
are ordered, i.e., σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0. ui are called the left-singular
vectors and vj are called the right-singular vectors.
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4.5 Singular Value Decomposition 119

Figure 4.7 Intuition
behind SVD of a
A ∈ R3×2 in the
standard basis as
sequential
transformations.
Top-left to
bottom-left: V >

performs a basis
change in R2.
Bottom-left-to-
bottom right Σ

performs a scaling
and increases the
dimensionality from
R2 to R3. The
ellipse in the
bottom-right lives in
R3 and the third
dimension is
orthogonal to the
surface of the
elliptical disk.
Bottom-left to
top-left: U performs
a second basis
change within R3.

2 Having changed the coordinate system to B̃, Σ scales the new coordi-2353

nates by the singular values σi (and adding or deleting dimensions),2354

i.e., Σ is the transformation matrix of Φ with respect to B̃ and C̃ (rep-2355

resented by the red and green vectors being stretched and lying in the2356

e1-e2 plane which is now embedded in a third dimension in Figure 4.72357

bottom right) .2358

3 U performs a basis change in the codomain Rm from C̃ into the canon-2359

ical basis of Rm (represented by a rotation of red and green vectors out2360

of the plane of the e1-e2 plane in Figure 4.7 bottom right).2361

The SVD expresses a change of basis in both the domain and codomain:2362

The columns ofU and V are the bases B̃ ofRn and C̃ ofRm, respectively.2363

Note, how this is in contrast with the eigendecomposition that operates2364

within the same vector space (where the same basis change is applied and2365

then undone). What makes the SVD special is that these two (different)2366

bases are simultaneously linked by the singular values matrix Σ. We refer2367

to Section 2.7.2 and Figure 2.11 for a more detailed discussion on basis2368

change.2369

c©2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.
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Σ has a diagonal submatrix that contains the singular values and needs
additional zero vectors that increase the dimension.

if m > n if m < n

Σ =



σ1 . . . 0

0
. . . 0

0 . . . σn
0 . . . 0
...

...
0 . . . 0


Σ =

σ1 . . . 0 0 . . . 0

0
. . . 0 0 . . . 0

0 . . . σn 0 . . . 0



The singular value matrix Σ must be of the same size as A

V. Mikayelyan Math for ML August 4, 2020 8 / 18



Example

A =

(
−1 1√

2
1

−1 − 1√
2

1

)
= UΣV T

=

(√
2
2 −

√
2
2√

2
2

√
2
2

)(
2 0 0
0 1 0

)−
√
2
2 0

√
2
2

0 −1 0

−
√
2
2 0 −

√
2
2



Example

A =

−3
√
3

4 −3
4

1
2 −

√
3
2

−9
4 −3

√
3

4

 = UΣV T

=

 −1
2 0

√
3
2

0 −1 0

−
√
3
2 0 −1

2


 3 0

0 1
0 0

( √
3
2

1
2

−1
2

√
3
2

)
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Remark

The eigenvalue decomposition of a symmetric matrix

S = ST = PDP T

is a special case of the SVD

S = UΣV T ,

where

U = V = P and Σ = D.
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Let r = rank(A).

Remark

The columns of U (m by m) are eigenvectors of AAT ,

the columns of V (n by n) are eigenvectors of ATA.

The r singular values on the diagonal of Σ (m by n) are the square
roots of the nonzero eigenvalues of both AAT and ATA.

Remark

U and V give orthonormal bases for all four fundamental subspaces:

first r columns of U : column space of A

last m− r columns of U : nullspace of AT

first r columns of V : row space of A

last n− r columns of V : nullspace of A
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Remark

When A multiplies a column vi of V , it produces σi times a column of U.

AV = UΣ⇔ Avi = σiui

V. Mikayelyan Math for ML August 4, 2020 12 / 18



V 1. How to compute the SVD in the case rank(A) = m ≤ n ?

Step 1: Compute the symmetrized matrix ATA (recall A ∈ Rm×n).
Step 2: Compute the eigenvalue decomposition of ATA = PDP T . From
here we obtain V = P, and ΣTΣ = D,

The eigenvalues of ATA are the squared singular values of Σ.
Step 3. Compute U using the formula

ui =
1

σi
Avi, i = 1, . . . ,m(m = rank(A))

V 2. How to compute the SVD in the case rank(A) = n ≤ m?

Step 1: Compute the symmetrized matrix AAT .
Step 2: Compute the eigenvalue decomposition of AAT = QD1Q

T . From
here we obtain U = Q, and ΣΣT = D1,
Step 3. Compute V using the formula

vi =
1

σi
ATui, i = 1, . . . , n(n = rank(A))
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V 3. How to compute the SVD in general case
(rank(A) = r ≤ min(m,n))?

Step 1: Compute the symmetrized matrix AAT .
Step 2: Compute the eigenvalue decomposition of AAT = QD1Q

T . From
here we obtain U = Q, and ΣΣT = D1,
Step 3. Compute V using the formula

vi =
1

σi
ATui, for i = 1, . . . , r

and choose vr+1,vr+2, . . . ,vn so that they form an orthonormal basis of
the nullspace of A

V. Mikayelyan Math for ML August 4, 2020 14 / 18



Example

Find the SVD of the matrix A =

(
0 2 0
1 0 0

)

Answer
A = UΣV T =(

−1 0
0 −1

)(
2 0 0
0 1 0

) 0 −1 0
−1 0 0
0 0 −1


Remark

If we were asked to find the SVD of the transpose of the initial matrix, i.e.

AT =

0 1
2 0
0 0

, then we would use the 2nd version of ”How to compute

the SVD?”, as in that case rank(A) = 2 =number of columns. So we
would first find the three left singular vectors (new u1,u2,u3), then using
those by vi = 1

σi
Aui, we would find the two right singular vectors (new

v1,v2).
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Example

Find the SVD of the matrix A =

3 2
2 3
2 −2



Answer
A = UΣV T =

− 1√
2
−
√
2
6

2
3

− 1√
2

√
2
6 −2

3

0 −2
√
2

3 −1
3


5 0

0 3
0 0

(− 1√
2
− 1√

2

− 1√
2

1√
2

)
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Mathematical Analysis
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Limit of a Sequence

Definition

We call x ∈ R the limit of the sequence {xn}∞n=1 if the following condition
holds: for each real number ε > 0, there exists a natural number n0 such
that, for every natural number n ≥ n0, we have |xn − x| < ε.

We will write lim
n→∞

xn = x or xn → x.

Definition

We will say than {xn}∞n=1 tends to infinity if the following condition holds:
for each real number E, there exists a natural number n0 such that, for
every natural number n ≥ n0, we have xn > E .

We will write lim
n→∞

xn = +∞ or xn → +∞.
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