Mathematics for Machine Learning

Vazgen Mikayelyan

August 4, 2020

Math for ML

A matrix $A \in \mathbb{R}^{n \times n}$ is **diagonalizable** if it is similar to a diagonal matrix, *i.e.* there exists a matrix $P \in \mathbb{R}^{n \times n}$ so that

 $D = P^{-1}AP,$

(equivalently AP = PD or $A = PDP^{-1}$) where $D = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & & \lambda_n \end{bmatrix}$

Proposition

If $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix with diagonal entries $\lambda_1, \ldots, \lambda_n$, then

AP = PD

for invertible matrix P if and only if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of Aand the \mathbf{p}_i are the corresponding eigenvectors of A, where $P = [\mathbf{p}_1 \ldots \mathbf{p}_n]$.

A symmetric matrix $S = S^T \in \mathbb{R}^{n \times n}$ can be diagonalized into

$$S = PDP^T$$

where P is matrix of n orthogonal eigenvectors, i.e. $P^T = P^{-1}$, and D is a diagonal matrix of its n eigenvalues.

A symmetric matrix $S = S^T \in \mathbb{R}^{n \times n}$ can be diagonalized into

 $S = PDP^T$

where P is matrix of n orthogonal eigenvectors, i.e. $P^T = P^{-1}$, and D is a diagonal matrix of its n eigenvalues.

Example

Compute the eigendecomposition of a (symmetric) matrix $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$

A symmetric matrix $S = S^T \in \mathbb{R}^{n \times n}$ can be diagonalized into

 $S = PDP^T$

where P is matrix of n orthogonal eigenvectors, i.e. $P^T = P^{-1}$, and D is a diagonal matrix of its n eigenvalues.

Example

Compute the eigendecomposition of a (symmetric) matrix $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$

Proposition

If
$$A = PDP^{-1}$$
, then $A^k = PD^kP^{-1}$ for any $k \in N$, and

$$D^k = \begin{bmatrix} \lambda_1^k & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \lambda_n^k \end{bmatrix}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

• Top-left to bottom-left: P^{-1} performs a basis change (here drawn in R^2 and depicted as a rotation-like operation), mapping the eigenvectors into the standard basis.

- Top-left to bottom-left: P^{-1} performs a basis change (here drawn in R^2 and depicted as a rotation-like operation), mapping the eigenvectors into the standard basis.
- Bottom-left to bottom-right: *D* performs a scaling along the remapped orthogonal eigenvectors, depicted here by a circle being stretched to an ellipse.

- Top-left to bottom-left: P^{-1} performs a basis change (here drawn in R^2 and depicted as a rotation-like operation), mapping the eigenvectors into the standard basis.
- Bottom-left to bottom-right: *D* performs a scaling along the remapped orthogonal eigenvectors, depicted here by a circle being stretched to an ellipse.
- Bottom-right to top-right: *P* undoes the basis change (depicted as a reverse rotation) and restores the original coordinate frame.

V. Mikayelyan

Singular Value Decomposition (SVD)

V.	Mika	vel	van
			,

Image: A matrix and a matrix

Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix of rank r, with $r \in [0, \min(m, n)]$. The Singular Value Decomposition or SVD of A is a decomposition of A of the form

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ is an orthogonal matrix of column vectors \mathbf{u}_i , and $V \in \mathbb{R}^{n \times n}$ is an orthogonal matrix of column vectors \mathbf{v}_j and Σ is an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i > 0$ and $\Sigma_{ij} = 0$, $i \neq j$. The SVD is always possible for any matrix A.

Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix of rank r, with $r \in [0, \min(m, n)]$. The Singular Value Decomposition or SVD of A is a decomposition of A of the form

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ is an orthogonal matrix of column vectors \mathbf{u}_i , and $V \in \mathbb{R}^{n \times n}$ is an orthogonal matrix of column vectors \mathbf{v}_j and Σ is an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i > 0$ and $\Sigma_{ij} = 0$, $i \neq j$. The SVD is always possible for any matrix A.

The σ_i are called the singular values, and by convention the singular values are ordered, i.e., $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r \ge 0$.

Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix of rank r, with $r \in [0, \min(m, n)]$. The Singular Value Decomposition or SVD of A is a decomposition of A of the form

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ is an orthogonal matrix of column vectors \mathbf{u}_i , and $V \in \mathbb{R}^{n \times n}$ is an orthogonal matrix of column vectors \mathbf{v}_j and Σ is an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i > 0$ and $\Sigma_{ij} = 0$, $i \neq j$. The SVD is always possible for any matrix A.

The σ_i are called the singular values, and by convention the singular values are ordered, i.e., $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r \ge 0$. \mathbf{u}_i are called the left-singular vectors and \mathbf{v}_i are called the right-singular vectors.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

 Σ has a diagonal submatrix that contains the singular values and needs additional zero vectors that increase the dimension.

$$\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ 0 & \ddots & 0 & 0 & \dots & 0 \\ 0 & \dots & \sigma_n & 0 & \dots & 0 \end{bmatrix}$$

The singular value matrix Σ must be of the same size as A

$$A = \begin{pmatrix} -1 & \frac{1}{\sqrt{2}} & 1\\ -1 & -\frac{1}{\sqrt{2}} & 1 \end{pmatrix} = U\Sigma V^{T}$$
$$= \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\ 0 & -1 & 0\\ -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$$

メロト メポト メヨト メヨト

$$A = \begin{pmatrix} -1 & \frac{1}{\sqrt{2}} & 1\\ -1 & -\frac{1}{\sqrt{2}} & 1 \end{pmatrix} = U\Sigma V^{T}$$
$$= \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\ 0 & -1 & 0\\ -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$$

Example

$$A = \begin{pmatrix} -\frac{3\sqrt{3}}{4} & -\frac{3}{4} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{9}{4} & -\frac{3\sqrt{3}}{4} \end{pmatrix} = U\Sigma V^{T}$$
$$= \begin{pmatrix} -\frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ 0 & -1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

Remark

The eigenvalue decomposition of a symmetric matrix

$$S = S^T = PDP^T$$

is a special case of the SVD

 $S = U\Sigma V^T,$

where

э

Remark

The eigenvalue decomposition of a symmetric matrix

$$S = S^T = PDP^T$$

is a special case of the SVD

$$S = U\Sigma V^T,$$

where U = V = P and $\Sigma = D$.

- (E

Let $r = \operatorname{rank}(A)$.

Remark

- The columns of U (m by m) are eigenvectors of AA^T ,
- the columns of V (n by n) are eigenvectors of $A^T A$.
- The r singular values on the diagonal of Σ (m by n) are the square roots of the nonzero eigenvalues of both AA^T and A^TA.

Let $r = \operatorname{rank}(A)$.

Remark

- The columns of U (m by m) are eigenvectors of AA^T ,
- the columns of V (n by n) are eigenvectors of $A^T A$.
- The r singular values on the diagonal of Σ (m by n) are the square roots of the nonzero eigenvalues of both AA^T and A^TA.

Remark

U and V give orthonormal bases for all four fundamental subspaces:

- first r columns of U: column space of A
- last m r columns of U: nullspace of A^T
- first r columns of V: row space of A
- last n r columns of V: nullspace of A

Remark

When A multiplies a column \mathbf{v}_i of V, it produces σ_i times a column of U.

 $AV = U\Sigma \Leftrightarrow A\mathbf{v}_i = \sigma_i \mathbf{u}_i$

э

1 How to compute the SVD in the case rank $(A) = m \le n$?

Step 1: Compute the symmetrized matrix $A^T A$ (recall $A \in \mathbb{R}^{m \times n}$). Step 2: Compute the eigenvalue decomposition of $A^T A = PDP^T$. From here we obtain V = P, and $\Sigma^T \Sigma = D$,

The eigenvalues of $A^T A$ are the squared singular values of Σ . Step 3. Compute U using the formula

$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i, \quad i = 1, \dots, m(m = \operatorname{rank}(A))$$

1. How to compute the SVD in the case $rank(A) = m \le n$?

Step 1: Compute the symmetrized matrix $A^T A$ (recall $A \in \mathbb{R}^{m \times n}$). Step 2: Compute the eigenvalue decomposition of $A^T A = PDP^T$. From here we obtain V = P, and $\Sigma^T \Sigma = D$,

The eigenvalues of $A^T A$ are the squared singular values of Σ . Step 3. Compute U using the formula

$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i, \quad i = 1, \dots, m(m = \operatorname{rank}(A))$$

V 2. How to compute the SVD in the case $rank(A) = n \le m$?

Step 1: Compute the symmetrized matrix AA^T . Step 2: Compute the eigenvalue decomposition of $AA^T = QD_1Q^T$. From here we obtain U = Q, and $\Sigma\Sigma^T = D_1$, Step 3. Compute V using the formula

$$\mathbf{v}_i = \frac{1}{\sigma_i} A^T \mathbf{u}_i, \quad i = 1, \dots, n(n = \operatorname{rank}(A))$$

V 3. How to compute the SVD in general case $(rank(A) = r \le \min(m, n))$?

Step 1: Compute the symmetrized matrix AA^T . Step 2: Compute the eigenvalue decomposition of $AA^T = QD_1Q^T$. From here we obtain U = Q, and $\Sigma\Sigma^T = D_1$, Step 3. Compute V using the formula

$$\mathbf{v}_i = \frac{1}{\sigma_i} A^T \mathbf{u}_i, \quad \text{for } i = 1, \dots, r$$

and choose $\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \dots, \mathbf{v}_n$ so that they form an orthonormal basis of the nullspace of A

Find the SVD of the matrix
$$A = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

3

メロト メポト メヨト メヨト

Find the SVD of the matrix
$$A = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Answer

$$A = U\Sigma V^{T} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

3

メロト メポト メヨト メヨト

Find the SVD of the matrix
$$A = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Answer

$$A = U\Sigma V^{T} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Remark

If we were asked to find the SVD of the transpose of the initial matrix, i.e. $A^{T} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ 0 & 0 \end{pmatrix}$, then we would use the 2nd version of "How to compute the SVD?", as in that case rank(A) = 2 = number of columns. So we would first find the **three** left singular vectors (new $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$), then using those by $\mathbf{v}_i = \frac{1}{\sigma_i} A \mathbf{u}_i$, we would find the **two** right singular vectors (new **V**1. **V**2 V. Mikayelyan Math for ML

Find the SVD of the matrix
$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix}$$

3

メロト メポト メヨト メヨト

Find the SVD of the matrix
$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix}$$

Answer

$$A = U\Sigma V^{T} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{6} & \frac{2}{3} \\ -\frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{6} & -\frac{2}{3} \\ 0 & -\frac{2\sqrt{2}}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

3

Mathematical Analysis

Limit of a Sequence

V.	Mil	kay	/el	yan

æ

We call $x \in \mathbb{R}$ the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon > 0$, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $|x_n - x| < \varepsilon$.

We call $x \in \mathbb{R}$ the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon > 0$, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $|x_n - x| < \varepsilon$.

We will write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.

We call $x \in \mathbb{R}$ the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon > 0$, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $|x_n - x| < \varepsilon$.

We will write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.

Definition

We will say than $\{x_n\}_{n=1}^{\infty}$ tends to infinity if the following condition holds: for each real number E, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $x_n > E$.

We call $x \in \mathbb{R}$ the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon > 0$, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $|x_n - x| < \varepsilon$.

We will write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.

Definition

We will say than $\{x_n\}_{n=1}^{\infty}$ tends to infinity if the following condition holds: for each real number E, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $x_n > E$.

We will write
$$\lim_{n \to \infty} x_n = +\infty$$
 or $x_n \to +\infty$.