
Machine Learning
Regression Methods



Topics of previous lecture

X Ingredients of Machine Learning

X Classification Basics

X Basic Linear Classifier

X K-Nearest Neighbours Classifier

X Naive Bayes Classifier

X Linear and Quadratic Discriminant Analysis

X Support Vector Machines (SVM)

X Decision Trees

X Ensemble Methods (Bagging, Weighted Voting, Stacking)
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Topics of today’s lecture

Main concepts in regression

Linear Regression

Ordinary Least Squares (OLS)
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Regression

Regression task is the same as classification task, except that we must
predict a continuous variable (instead of a categorical class label)

For example:

predict the salary given the info about a person
predict the risk of a policyholder for insurance
predict the expected number of days that a patient will stay in a
hospital
...
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Classification vs Regression model
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Mathematical notation of classification

X - input space (set of all possible instances)

Y - output space (all possible labels)

f : X→ Y - any such function is a classifier

x ∈ X - instance

y ∈ Y - actual / true label of instance x

ŷ = f(x)- predicted label of instance x
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Mathematical notation of classification regression

X - input space (set of all possible instances)

Y - output space (all possible labels real numbers)

f : X→ Y - any such function is a classifier regression model

x ∈ X - instance

y ∈ Y - actual / true label target value of instance x

ŷ = f(x)- predicted label target value of instance x
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Learning Problem in Regression

Suppose that there exists an actual / true function, mapping the
features to target variable f∗ : X→ R

In regression the task is to learn a function approximator f̂ : X→ R
such that f̂ ≈ f∗

For this we are given training data
(x1, y1), (x2, y2), . . . , (xn, yn) ∈ X× R
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Learning Problem in Regression

Do we want to learn f̂ such that: f̂(x1) ≈ y1, . . . , f̂(xn) ≈ yn ?

No! This would mean good predictions on training data, which is not
our main goal!

We want to predict well on (future) test data!

On any future instance X ∈ X with true (hidden) target Y we want
f̂(X) ≈ Y
What does this really mean?
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Learning Problem in Regression

FAST Foundation Regression Methods 30 November 2020 10 / 33

y

f(x)

f(x0)

p(y|x0)



Derivation of the Regression function

Definition

For X and Y continuous random variables, the conditional expectation is

E(X|Y ) =

∫
x∈X

xp(x|y)dx,

where p(x|y) = p(x,y)
p(y) is the conditional density function of X given Y .

When choosing a particular estimate function f(x) for the true value
y we encounter some loss L(y, f(x))

The average or expected loss is given by

E(L) =

∫∫
L(y, f(x))p(x, y)dxdy
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Derivation of the Regression function

The average or expected loss is given by
E(L) =

∫∫
L(y, f(x))p(x, y)dxdy

A common choice of loss function in regression is the squared loss
L(y, f(x)) = (f(x)− y)2. The average loss will be

E(L) =

∫∫
(f(x)− y)2p(x, y)dxdy

Our goal is to choose f(x) such that E(L) will be minimized:

∂E(L)

∂f(x)
= 2

∫
(f(x)− y)p(x, y)dy = 0

Solving for f(x) gives

f(x) =

∫
yp(x, y)dy

p(x)
=

∫
yp(y|x)dy = E(Y |X)
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Mean Regression

In mean regression (the usual type of regression) the task is taken to
predict the conditional expectation:

f∗(X) = E(Y |X)

Hence, for any X we want to estimate the expected value of the
corresponding Y

Suppose we want to predict the weight of a person from height

In reality, there are many people with the same height but different
weight

Height does not determine the weight uniquely

Relationship between height and weight is non-deterministic

In case of mean regression, we predict the expected weight of people
with a given height
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Mean Regression
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Mean Regression
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Alternatives to mean regression

Median regression:
Example: for a given height, predict the weight such that
approximately half of the people with this height would be heavier
than this

Quantile regression:
Median regression generalized to any other quantile (median is the
50%-quantile)
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Evaluation of regression

How do we evaluate how well f̂ approximates f∗(X) = E(Y |X)?

Even if we have hold-out test data, we still do not know the true
f∗(X) = E(Y |X).

f∗(X) minimizes the expected squared error on future data

f∗(X) = argmin
y∈R

E[(y − Y )2|X] = E[Y |X]

Therefore, the most usual evaluation measure in (mean) regression is
mean squared error (MSE) on test data:

1

|Te|
∑

(x,y)∈Te

(f̂(x)− y)2
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Noise in regression

Noise is the difference between the true label and the prediction
f∗ = E[Y |X]

ε = Y − f∗(X)

This relationship is usually presented as:

Y = f∗(X) + ε

The task in mean regression is to predict f∗(X) and the noise cannot
be (and should not attempted to be) predicted from the features X
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Example on noise

Suppose we want to predict a person’s weight from height

What is the noise here?

Noise is the difference between the actual weight and the average
weight among people with the same height
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More on evaluation of regression

Two common measures:

MSE - mean squared error

MSE =
1

|Te|
∑

(x,y)∈Te

(f̂(x)− y)2

RMSE - root mean squared error

RMSE =
√
MSE

The advantage of RMSE: easier to interpret because it is measured in
the same units as the target variable (whereas MSE is measured in
these units squared)
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Linear regression

In regression the task is to learn a function approximator: f̂ : X→ R

In linear regression:

We assume that the features are all numeric:

X ∈ Rd

We must learn a linear model:

f̂(x) = w0 + w · x = w0 +

d∑
i=1

wixi

w0 - intercept
w - coefficients (coefficient vector)
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Univariate linear regression

Linear regression with a single feature

We must learn a univariate linear function:

f̂(x) = w0 + w · x = w0 + w1x1,

where w0 is the intercept and w1 is the slope of the line

We have training data: (x1, y1), (x2, y2), . . . , (xn, yn) ∈ R2

Task is to learn w0 and w1 such that f̂ minimizes future squared error

One of the popular methods is the Ordinary Least Squares (OLS)
method
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Ordinary Least Squares (OLS)
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Univariate OLS

Ordinary least squares (OLS) regression learns the weights by minimizing
MSE on training data:

ŵ0, ŵ1 = argmin
w0,w1

MSE(w0, w1) =
1

|Tr|
∑

(x,y)∈Tr

((w0 + w1x)− y)2
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Calculating the partial derivatives

MSE(w0, w1) =
1
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(y − ȳ)(x− x̄)⇒ w1 =
∑
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(y − ȳ)(x− x̄)⇒ w1 =
∑
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Univariate OLS

Ordinary least squares (OLS) regression learns the weights by minimizing
MSE on training data:

ŵ0, ŵ1 = argmin
w0,w1

MSE(w0, w1) =

ŵ1 =
ˆCov(x, y)

ˆV ar(x)

ŵ0 = ȳ − ŵ1x̄
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Univariate OLS

Fitting:
Calculate ŵ0, ŵ1 based on the

sample mean and variance of feature values x
sample mean of y
sample covariance of x and y

Predicting for a new instance x:

ŷ = f̂(x) = ŵ0 + ŵ1x

If before learning the regression model we standardise both the
feature and the target variable (zero mean and unit variance), then
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sample mean and variance of feature values x
sample mean of y
sample covariance of x and y

Predicting for a new instance x:

ŷ = f̂(x) = ŵ0 + ŵ1x

If before learning the regression model we standardise both the
feature and the target variable (zero mean and unit variance), then

ŵ0, ŵ1 = argmin
w0,w1

MSE(w0, w1) =

ŵ1 =
ˆCov(x,y)
ˆV ar(x)

= ˆCorr(x, y)

ŵ0 = ȳ − w1x̄ = 0
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Ordinary Least Squares

OLS is very sensitive to outliers

A single faraway point can significantly shift the predictions
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Multivariate OLS

Linear model:

f̂(x) = w0 + w · x = w0 +

d∑
i=1

wixi

Ordinary least squares (OLS) regression learns the weights by
minimizing MSE on training data:

ŵ0, ŵ = argmin
w0,w

MSE(w0,w) = argmin
w0,w

1

|Tr|
∑

(x,y)∈Tr

((w0+w·x)−y)2

Let’s add a feature, which is always 1

x = (x1, . . . , xd) → x′ = (1, x1, . . . , xd) = (x0, x1, . . . , xd)
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Let’s add a feature, which is always 1

x = (x1, . . . , xd) → x′ = (1, x1, . . . , xd) = (x0, x1, . . . , xd)

f̂(x′) = w′ · x′ =
d∑

i=0

wixi

from now on we will skip the ’ for simplicity
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OLS in matrix form

ŵ = argmin
w

MSE(w) = argmin
w

1

|Tr|
∑

(x,y)∈Tr

(w · x− y)2

Denote the training instances by
(x1, y1), (x2, y2), . . . , (xn, yn) ∈ Rd+1 × R
Denote the residual errors on instances by:
e1 = y1 − x1 ·w, . . . , en = yn − xn ·w
In matrix form: e = y −Xw

ŵ = argmin
w

n∑
i=1

e2
i = argmin

w
e · e = argmin

w
(y −Xw) · (y −Xw)

To solve this we equate the gradient to zero:

∂(y −Xw)T (y −Xw)

∂w
= 0
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Calculating the partial derivatives

Based on the properties of matrix derivatives:

∂(y −Xw)T (y −Xw)

∂w
=
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Calculating the partial derivatives

Based on the properties of matrix derivatives:

∂(y −Xw)T (y −Xw)

∂w
= −2XT (y −Xw) = 0

XTXw = XTy

(XTX)−1(XTX)w = (XTX)−1(XTy)

w = (XTX)−1(XTy)

For multivariate OLS there exists a closed-form solution (i.e. can be
explicitly calculated without numerical optimization):

ŵ = argmin
w

(y −Xw) · (y −Xw) = (XTX)−1(XTy)
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Multivariate OLS

Pro: if the number of instances is much bigger than the number of
features, then OLS works quite well

Con: otherwise OLS tends to overfit the noise, particularly if there is a lot
of noise in the data

Con: if many features are collinear (highly correlated) then OLS tends to
overfit
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What have we learned today?

X Main concepts in regression

X Linear Regression

X Ordinary Least Squares (OLS)
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