Machine Learning Regression Methods

FAST DISCOVERING THE FUTURE

- ✓ Ingredients of Machine Learning
- ✓ Classification Basics
- ✓ Basic Linear Classifier
- ✓ K-Nearest Neighbours Classifier
- ✓ Naive Bayes Classifier
- ✓ Linear and Quadratic Discriminant Analysis
- ✓ Support Vector Machines (SVM)
- ✓ Decision Trees
- ✓ Ensemble Methods (Bagging, Weighted Voting, Stacking)

- Main concepts in regression
- Linear Regression
- Ordinary Least Squares (OLS)

• Regression task is the same as classification task, except that we must predict a continuous variable (instead of a categorical class label)

- Regression task is the same as classification task, except that we must predict a continuous variable (instead of a categorical class label)
- For example:

- Regression task is the same as classification task, except that we must predict a continuous variable (instead of a categorical class label)
- For example:
 - predict the salary given the info about a person

- Regression task is the same as classification task, except that we must predict a continuous variable (instead of a categorical class label)
- For example:
 - predict the salary given the info about a person
 - predict the risk of a policyholder for insurance

- Regression task is the same as classification task, except that we must predict a continuous variable (instead of a categorical class label)
- For example:
 - predict the salary given the info about a person
 - predict the risk of a policyholder for insurance
 - predict the expected number of days that a patient will stay in a hospital
 - ...

- X input space (set of all possible instances)
- \mathbb{Y} output space (all possible labels)
- $f: \mathbb{X} \to \mathbb{Y}$ any such function is a classifier
- $\mathbf{x} \in \mathbb{X}$ instance
- $y \in \mathbb{Y}$ actual / true label of instance \mathbf{x}
- $\hat{y} = f(\mathbf{x})$ predicted label of instance \mathbf{x}

- X input space (set of all possible instances)
- Y output space (all possible labels real numbers)
- $f: \mathbb{X} \to \mathbb{Y}$ any such function is a classifier regression model
- $\mathbf{x} \in \mathbb{X}$ instance
- $y \in \mathbb{Y}$ actual / true label target value of instance \mathbf{x}
- $\hat{y} = f(\mathbf{x})\text{-}$ predicted label target value of instance \mathbf{x}

• Suppose that there exists an actual / true function, mapping the features to target variable $f^*: X \to \mathbb{R}$

- Suppose that there exists an actual / true function, mapping the features to target variable $f^*:\mathbb{X}\to\mathbb{R}$
- In regression the task is to learn a function approximator $\hat{f}:\mathbb{X}\to\mathbb{R}$ such that $\hat{f}\approx f^*$

- Suppose that there exists an actual / true function, mapping the features to target variable $f^*:\mathbb{X}\to\mathbb{R}$
- In regression the task is to learn a function approximator $\hat{f}:\mathbb{X}\to\mathbb{R}$ such that $\hat{f}\approx f^*$
- For this we are given training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n) \in \mathbb{X} \times \mathbb{R}$

• Do we want to learn \hat{f} such that: $\hat{f}(\mathbf{x}_1) \approx y_1, \dots, \hat{f}(\mathbf{x}_n) \approx y_n$?

- Do we want to learn \hat{f} such that: $\hat{f}(\mathbf{x}_1) \approx y_1, \dots, \hat{f}(\mathbf{x}_n) \approx y_n$?
- No! This would mean good predictions on training data, which is not our main goal!

- Do we want to learn \hat{f} such that: $\hat{f}(\mathbf{x}_1) \approx y_1, \dots, \hat{f}(\mathbf{x}_n) \approx y_n$?
- No! This would mean good predictions on training data, which is not our main goal!
- We want to predict well on (future) test data!

- Do we want to learn \hat{f} such that: $\hat{f}(\mathbf{x}_1) \approx y_1, \dots, \hat{f}(\mathbf{x}_n) \approx y_n$?
- No! This would mean good predictions on training data, which is not our main goal!
- We want to predict well on (future) test data!
- On any future instance $\mathbf{X}\in\mathbb{X}$ with true (hidden) target Y we want $\widehat{f}(\mathbf{X})\approx Y$

- Do we want to learn \hat{f} such that: $\hat{f}(\mathbf{x}_1) \approx y_1, \dots, \hat{f}(\mathbf{x}_n) \approx y_n$?
- No! This would mean good predictions on training data, which is not our main goal!
- We want to predict well on (future) test data!
- On any future instance $\mathbf{X}\in\mathbb{X}$ with true (hidden) target Y we want $\widehat{f}(\mathbf{X})\approx Y$
- What does this really mean?

Learning Problem in Regression

	lation
I A.) I	ылоп

Definition

For X and Y continuous random variables, the conditional expectation is

$$\mathbb{E}(X|Y) = \int_{x \in \mathcal{X}} x p(x|y) dx,$$

where $p(x|y) = \frac{p(x,y)}{p(y)}$ is the conditional density function of X given Y.

Definition

For X and Y continuous random variables, the conditional expectation is

$$\mathbb{E}(X|Y) = \int_{x \in \mathcal{X}} x p(x|y) dx,$$

where $p(x|y) = \frac{p(x,y)}{p(y)}$ is the conditional density function of X given Y.

• When choosing a particular estimate function $f({\bf x})$ for the true value y we encounter some loss $L(y,f({\bf x}))$

Definition

For X and Y continuous random variables, the conditional expectation is

$$\mathbb{E}(X|Y) = \int_{x \in \mathcal{X}} x p(x|y) dx,$$

where $p(x|y) = \frac{p(x,y)}{p(y)}$ is the conditional density function of X given Y.

- When choosing a particular estimate function $f({\bf x})$ for the true value y we encounter some loss $L(y,f({\bf x}))$
- The average or expected loss is given by

$$\mathbb{E}(L) = \iint L(y, f(\mathbf{x})) p(\mathbf{x}, y) d\mathbf{x} dy$$

• The average or expected loss is given by $\mathbb{E}(L)=\int\int L(y,f(\mathbf{x}))p(\mathbf{x},y)d\mathbf{x}dy$

- The average or expected loss is given by $\mathbb{E}(L) = \iint L(y, f(\mathbf{x})) p(\mathbf{x}, y) d\mathbf{x} dy$
- A common choice of loss function in regression is the squared loss $L(y, f(\mathbf{x})) = (f(\mathbf{x}) y)^2$. The average loss will be

$$\mathbb{E}(L) = \iint (f(\mathbf{x}) - y)^2 p(\mathbf{x}, y) d\mathbf{x} dy$$

- The average or expected loss is given by $\mathbb{E}(L) = \iint L(y, f(\mathbf{x})) p(\mathbf{x}, y) d\mathbf{x} dy$
- A common choice of loss function in regression is the squared loss $L(y, f(\mathbf{x})) = (f(\mathbf{x}) y)^2$. The average loss will be

$$\mathbb{E}(L) = \iint (f(\mathbf{x}) - y)^2 p(\mathbf{x}, y) d\mathbf{x} dy$$

• Our goal is to choose $f(\mathbf{x})$ such that $\mathbb{E}(L)$ will be minimized:

$$\frac{\partial \mathbb{E}(L)}{\partial f(\mathbf{x})} = 2 \int (f(\mathbf{x}) - y) p(\mathbf{x}, y) dy = 0$$

- The average or expected loss is given by $\mathbb{E}(L) = \iint L(y, f(\mathbf{x})) p(\mathbf{x}, y) d\mathbf{x} dy$
- A common choice of loss function in regression is the squared loss $L(y, f(\mathbf{x})) = (f(\mathbf{x}) y)^2$. The average loss will be

$$\mathbb{E}(L) = \iint (f(\mathbf{x}) - y)^2 p(\mathbf{x}, y) d\mathbf{x} dy$$

• Our goal is to choose $f(\mathbf{x})$ such that $\mathbb{E}(L)$ will be minimized:

$$\frac{\partial \mathbb{E}(L)}{\partial f(\mathbf{x})} = 2 \int (f(\mathbf{x}) - y)p(\mathbf{x}, y)dy = 0$$

• Solving for $f(\mathbf{x})$ gives

$$f(\mathbf{x}) = \frac{\int y p(\mathbf{x}, y) dy}{p(\mathbf{x})} = \int y p(y|\mathbf{x}) dy = \mathbb{E}(Y|X)$$

$$f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$$

$$f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$$

• Hence, for any ${\bf X}$ we want to estimate the expected value of the corresponding Y

$$f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$$

- Hence, for any ${\bf X}$ we want to estimate the expected value of the corresponding Y
- Suppose we want to predict the weight of a person from height

$$f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$$

- \bullet Hence, for any ${\bf X}$ we want to estimate the expected value of the corresponding Y
- Suppose we want to predict the weight of a person from height
- In reality, there are many people with the same height but different weight

$$f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$$

- $\bullet\,$ Hence, for any ${\bf X}$ we want to estimate the expected value of the corresponding Y
- Suppose we want to predict the weight of a person from height
- In reality, there are many people with the same height but different weight
- Height does not determine the weight uniquely

$$f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$$

- $\bullet\,$ Hence, for any ${\bf X}$ we want to estimate the expected value of the corresponding Y
- Suppose we want to predict the weight of a person from height
- In reality, there are many people with the same height but different weight
- Height does not determine the weight uniquely
- Relationship between height and weight is non-deterministic

$$f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$$

- $\bullet\,$ Hence, for any ${\bf X}$ we want to estimate the expected value of the corresponding Y
- Suppose we want to predict the weight of a person from height
- In reality, there are many people with the same height but different weight
- Height does not determine the weight uniquely
- Relationship between height and weight is non-deterministic
- In case of mean regression, we predict the expected weight of people with a given height

2

• • • • • • • • • • •

< ∃⇒

э

• • • • • • • • • •
• Median regression:

Example: for a given height, predict the weight such that approximately half of the people with this height would be heavier than this

• Median regression:

Example: for a given height, predict the weight such that approximately half of the people with this height would be heavier than this

• Quantile regression:

Median regression generalized to any other quantile (median is the $50\%\mbox{-}{\rm quantile}\mbox{)}$

• How do we evaluate how well \hat{f} approximates $f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$?

Evaluation of regression

- How do we evaluate how well \hat{f} approximates $f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$?
- Even if we have hold-out test data, we still do not know the true $f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X}).$

Evaluation of regression

- How do we evaluate how well \hat{f} approximates $f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$?
- Even if we have hold-out test data, we still do not know the true $f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X}).$
- $f^*(\mathbf{X})$ minimizes the expected squared error on future data

$$f^*(\mathbf{X}) = \operatorname*{argmin}_{y \in \mathbb{R}} \mathbb{E}[(y - Y)^2 | \mathbf{X}] = \mathbb{E}[Y | \mathbf{X}]$$

Evaluation of regression

- How do we evaluate how well \hat{f} approximates $f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X})$?
- Even if we have hold-out test data, we still do not know the true $f^*(\mathbf{X}) = \mathbb{E}(Y|\mathbf{X}).$
- $f^*(\mathbf{X})$ minimizes the expected squared error on future data

$$f^*(\mathbf{X}) = \operatorname*{argmin}_{y \in \mathbb{R}} \mathbb{E}[(y - Y)^2 | \mathbf{X}] = \mathbb{E}[Y | \mathbf{X}]$$

 Therefore, the most usual evaluation measure in (mean) regression is mean squared error (MSE) on test data:

$$\frac{1}{|Te|} \sum_{(\mathbf{x},y)\in Te} (\hat{f}(\mathbf{x}) - y)^2$$

• Noise is the difference between the true label and the prediction $f^* = \mathbb{E}[Y|\mathbf{X}]$

$$\epsilon = Y - f^*(\mathbf{X})$$

< 1 k

э

• Noise is the difference between the true label and the prediction $f^* = \mathbb{E}[Y|\mathbf{X}]$

$$\epsilon = Y - f^*(\mathbf{X})$$

• This relationship is usually presented as:

$$Y = f^*(X) + \epsilon$$

• Noise is the difference between the true label and the prediction $f^* = \mathbb{E}[Y|\mathbf{X}]$

$$\epsilon = Y - f^*(\mathbf{X})$$

• This relationship is usually presented as:

$$Y = f^*(X) + \epsilon$$

• The task in mean regression is to predict $f^*(X)$ and the noise cannot be (and should not attempted to be) predicted from the features X

• Suppose we want to predict a person's weight from height

< 行

э

- Suppose we want to predict a person's weight from height
- What is the noise here?

- Suppose we want to predict a person's weight from height
- What is the noise here?
- Noise is the difference between the actual weight and the average weight among people with the same height

More on evaluation of regression

• Two common measures:

э

More on evaluation of regression

- Two common measures:
 - MSE mean squared error

$$MSE = \frac{1}{|Te|} \sum_{(\mathbf{x}, y) \in Te} (\hat{f}(\mathbf{x}) - y)^2$$

More on evaluation of regression

- Two common measures:
 - MSE mean squared error

$$MSE = \frac{1}{|Te|} \sum_{(\mathbf{x}, y) \in Te} (\hat{f}(\mathbf{x}) - y)^2$$

• RMSE - root mean squared error

$$RMSE = \sqrt{MSE}$$

- Two common measures:
 - MSE mean squared error

$$MSE = \frac{1}{|Te|} \sum_{(\mathbf{x}, y) \in Te} (\hat{f}(\mathbf{x}) - y)^2$$

• RMSE - root mean squared error

$$RMSE = \sqrt{MSE}$$

• The advantage of RMSE: easier to interpret because it is measured in the same units as the target variable (whereas MSE is measured in these units squared)

• In regression the task is to learn a function approximator: $\hat{f}:\mathbb{X}\to\mathbb{R}$

- \bullet In regression the task is to learn a function approximator: $\hat{f}:\mathbb{X}\to\mathbb{R}$
- In linear regression:

- In regression the task is to learn a function approximator: $\hat{f}:\mathbb{X}\to\mathbb{R}$
- In linear regression:
 - We assume that the features are all numeric:

- In regression the task is to learn a function approximator: $\hat{f}:\mathbb{X}\to\mathbb{R}$
- In linear regression:
 - We assume that the features are all numeric:

• We must learn a linear model:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i$$

- In regression the task is to learn a function approximator: $\hat{f}:\mathbb{X}\to\mathbb{R}$
- In linear regression:
 - We assume that the features are all numeric:

• We must learn a linear model:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i$$

• w_0 - intercept

- In regression the task is to learn a function approximator: $\hat{f}:\mathbb{X}\to\mathbb{R}$
- In linear regression:
 - We assume that the features are all numeric:

• We must learn a linear model:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i$$

w₀ - intercept
w - coefficients (coefficient vector)

• Linear regression with a single feature

- Linear regression with a single feature
- We must learn a univariate linear function:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + w_1 x_1,$$

- Linear regression with a single feature
- We must learn a univariate linear function:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + w_1 x_1,$$

• We have training data: $(x_1,y_1), (x_2,y_2), \ldots, (x_n,y_n) \in \mathbb{R}^2$

- Linear regression with a single feature
- We must learn a univariate linear function:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + w_1 x_1,$$

- We have training data: $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\in\mathbb{R}^2$
- Task is to learn w_0 and w_1 such that \hat{f} minimizes future squared error

- Linear regression with a single feature
- We must learn a univariate linear function:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + w_1 x_1,$$

- We have training data: $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\in\mathbb{R}^2$
- Task is to learn w_0 and w_1 such that \hat{f} minimizes future squared error
- One of the popular methods is the Ordinary Least Squares (OLS) method

Ordinary Least Squares (OLS)

Univariate OLS

Ordinary least squares (OLS) regression learns the weights by minimizing MSE on training data:

$$\hat{w}_0, \hat{w}_1 = \operatorname*{argmin}_{w_0, w_1} MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1x) - y)^2$$

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1x) - y)^2$$

• Calculating the gradient with respect to w_0

$$\frac{\partial MSE}{\partial w_0} =$$

FAST Foundation

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1x) - y)^2$$

• Calculating the gradient with respect to w_0

$$\frac{\partial MSE}{\partial w_0} = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1 x - y) = 0$$

FAST Foundation

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1x) - y)^2$$

• Calculating the gradient with respect to w_0

$$\frac{\partial MSE}{\partial w_0} = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1x - y) = 0$$
$$\frac{1}{|Tr|} \sum_{(x,y)\in Tr} y = w_0 + w_1 \frac{1}{|Tr|} \sum_{(x,y)\in Tr} x$$

Calculating the partial derivatives

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1x) - y)^2$$

• Calculating the gradient with respect to w_0

$$\begin{split} \frac{\partial MSE}{\partial w_0} &= \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1x - y) = 0\\ \frac{1}{|Tr|} \sum_{(x,y)\in Tr} y &= w_0 + w_1 \frac{1}{|Tr|} \sum_{(x,y)\in Tr} x\\ w_0 &= \bar{y} - w_1 \bar{x} \end{split}$$

where $\bar{x} &= \frac{1}{|Tr|} \sum_{(x,y)\in Tr} x$ and $\bar{y} = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} y$

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y) \in Tr} ((w_0 + w_1x) - y)^2$$

Calculating the gradient with respect to w_1

 $\frac{\partial MSE}{\partial w_1} =$

Image: A matrix and a matrix

æ

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1 x) - y)^2$$

Calculating the gradient with respect to w_1

$$\frac{\partial MSE}{\partial w_1} = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1x - y)x = 0$$

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1x) - y)^2$$

Calculating the gradient with respect to w_1

$$\frac{\partial MSE}{\partial w_1} = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1x - y)x = 0$$
$$\frac{1}{|Tr|} \sum_{(x,y)\in Tr} (\bar{y} - w_1\bar{x} + w_1x - y)x = 0$$
$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1x) - y)^2$$

Calculating the gradient with respect to w_1

$$\frac{\partial MSE}{\partial w_1} = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1x - y)x = 0$$
$$\frac{1}{|Tr|} \sum_{(x,y)\in Tr} (\bar{y} - w_1\bar{x} + w_1x - y)x = 0$$
$$w_1 \sum_{(x,y)\in Tr} (x - \bar{x}) \cdot x = \sum_{(x,y)\in Tr} (y - \bar{y}) \cdot x$$

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1x) - y)^2$$

Calculating the gradient with respect to w_1

$$\frac{\partial MSE}{\partial w_1} = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1x - y)x = 0$$
$$\frac{1}{|Tr|} \sum_{(x,y)\in Tr} (\bar{y} - w_1\bar{x} + w_1x - y)x = 0$$
$$w_1 \sum_{(x,y)\in Tr} (x - \bar{x}) \cdot x = \sum_{(x,y)\in Tr} (y - \bar{y}) \cdot x$$
$$\left[\sum(x - \bar{x}) \cdot x - \sum(x - \bar{x}) \cdot \bar{x}\right] = \sum(y - \bar{y}) \cdot x - \sum(y - \bar{y}) \cdot \bar{x}$$

FAST Foundation

 $w_1($

э

Calculating the partial derivatives

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1 x) - y)^2$$

Calculating the gradient with respect to w_1

$$\frac{\partial MSE}{\partial w_1} = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1x - y)x = 0$$
$$\frac{1}{|Tr|} \sum_{(x,y)\in Tr} (\bar{y} - w_1\bar{x} + w_1x - y)x = 0$$
$$w_1 \sum_{(x,y)\in Tr} (x - \bar{x}) \cdot x = \sum_{(x,y)\in Tr} (y - \bar{y}) \cdot x$$
$$w_1 \Big(\sum (x - \bar{x}) \cdot x - \sum (x - \bar{x}) \cdot \bar{x} \Big) = \sum (y - \bar{y}) \cdot x - \sum (y - \bar{y}) \cdot \bar{x}$$
$$w_1 \sum (x - \bar{x})^2 = \sum (y - \bar{y})(x - \bar{x}) \Rightarrow$$

FAST Foundation

 w_1

Calculating the partial derivatives

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1 x) - y)^2$$

Calculating the gradient with respect to w_1

$$\begin{aligned} \frac{\partial MSE}{\partial w_1} &= \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1x - y)x = 0\\ \frac{1}{|Tr|} \sum_{(x,y)\in Tr} (\bar{y} - w_1\bar{x} + w_1x - y)x = 0\\ w_1 \sum_{(x,y)\in Tr} (x - \bar{x}) \cdot x &= \sum_{(x,y)\in Tr} (y - \bar{y}) \cdot x\\ w_1 \Big(\sum (x - \bar{x}) \cdot x - \sum (x - \bar{x}) \cdot \bar{x} \Big) &= \sum (y - \bar{y}) \cdot x - \sum (y - \bar{y}) \cdot \bar{x}\\ w_1 \sum (x - \bar{x})^2 &= \sum (y - \bar{y})(x - \bar{x}) \Rightarrow \quad w_1 = \frac{\sum (y - \bar{y})(x - \bar{x})}{\sum (x - \bar{x})^2} = \end{aligned}$$

Calculating the partial derivatives

$$MSE(w_0, w_1) = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} ((w_0 + w_1 x) - y)^2$$

Calculating the gradient with respect to w_1

$$\frac{\partial MSE}{\partial w_1} = \frac{1}{|Tr|} \sum_{(x,y)\in Tr} 2(w_0 + w_1x - y)x = 0$$
$$\frac{1}{|Tr|} \sum_{(x,y)\in Tr} (\bar{y} - w_1\bar{x} + w_1x - y)x = 0$$
$$w_1 \sum_{(x,y)\in Tr} (x - \bar{x}) \cdot x = \sum_{(x,y)\in Tr} (y - \bar{y}) \cdot x$$
$$w_1 \Big(\sum (x - \bar{x}) \cdot x - \sum (x - \bar{x}) \cdot \bar{x} \Big) = \sum (y - \bar{y}) \cdot x - \sum (y - \bar{y}) \cdot \bar{x}$$
$$w_1 \sum (x - \bar{x})^2 = \sum (y - \bar{y}) \cdot x - \sum (y - \bar{y}) \cdot \bar{x} = \sum (y - \bar{y}) \cdot x - \sum (y - \bar{y}) \cdot \bar{x}$$

Univariate OLS

Ordinary least squares (OLS) regression learns the weights by minimizing MSE on training data:

$$\hat{w}_{0}, \hat{w}_{1} = \operatorname*{argmin}_{w_{0}, w_{1}} MSE(w_{0}, w_{1}) = \begin{cases} \hat{w}_{1} &= \frac{Cov(x, y)}{Var(x)} \\ \hat{w}_{0} &= \bar{y} - \hat{w}_{1}\bar{x} \end{cases}$$

• Fitting: Calculate \hat{w}_0, \hat{w}_1 based on the

э

Image: A matrix and a matrix

Calculate \hat{w}_0, \hat{w}_1 based on the

 ${\ensuremath{\,\circ}}$ sample mean and variance of feature values x

< 1 k

Calculate \hat{w}_0, \hat{w}_1 based on the

- ${\ensuremath{\, \bullet }}$ sample mean and variance of feature values x
- ${\ensuremath{\, \rm o}}$ sample mean of y

Calculate \hat{w}_0, \hat{w}_1 based on the

- ${\ensuremath{\, \bullet }}$ sample mean and variance of feature values x
- ${\scriptstyle \bullet} \,$ sample mean of y
- $\bullet\,$ sample covariance of x and y

Calculate \hat{w}_0, \hat{w}_1 based on the

- ${\ensuremath{\, \bullet }}$ sample mean and variance of feature values x
- ${\scriptstyle \bullet} \,$ sample mean of y
- $\bullet\,$ sample covariance of x and y
- Predicting for a new instance *x*:

$$\hat{y} = \hat{f}(x) = \hat{w}_0 + \hat{w}_1 x$$

Calculate \hat{w}_0, \hat{w}_1 based on the

- ${\ensuremath{\, \bullet }}$ sample mean and variance of feature values x
- ${\scriptstyle \bullet} \,$ sample mean of y
- ${\ensuremath{\, \circ }}$ sample covariance of x and y
- Predicting for a new instance *x*:

$$\hat{y} = \hat{f}(x) = \hat{w}_0 + \hat{w}_1 x$$

• If before learning the regression model we **standardise** both the feature and the target variable (zero mean and unit variance), then

Univariate OLS

• Fitting:

Calculate \hat{w}_0, \hat{w}_1 based on the

- $\bullet\,$ sample mean and variance of feature values x
- sample mean of y
- sample covariance of \boldsymbol{x} and \boldsymbol{y}
- Predicting for a new instance *x*:

$$\hat{y} = \hat{f}(x) = \hat{w}_0 + \hat{w}_1 x$$

• If before learning the regression model we **standardise** both the feature and the target variable (zero mean and unit variance), then

$$\hat{w}_0, \hat{w}_1 = \operatorname*{argmin}_{w_0, w_1} MSE(w_0, w_1) = \begin{cases} \hat{w}_1 = \frac{\hat{Cov}(x, y)}{\hat{Var}(x)} = \hat{Corr}(x, y) \\ \hat{w}_0 = \bar{y} - w_1 \bar{x} = 0 \end{cases}$$

Ordinary Least Squares

- OLS is very sensitive to outliers
- A single faraway point can significantly shift the predictions

Ordinary Least Squares

- OLS is very sensitive to outliers
- A single faraway point can significantly shift the predictions

Multivariate OLS

• Linear model:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i$$

イロト イヨト イヨト イヨト

2

• Linear model:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i$$

• Ordinary least squares (OLS) regression learns the weights by minimizing MSE on training data:

$$\hat{w}_0, \hat{\mathbf{w}} = \operatorname*{argmin}_{w_0, \mathbf{w}} MSE(w_0, \mathbf{w}) = \operatorname*{argmin}_{w_0, \mathbf{w}} \frac{1}{|Tr|} \sum_{(x, y) \in Tr} ((w_0 + \mathbf{w} \cdot \mathbf{x}) - y)^2$$

• Linear model:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i$$

• Ordinary least squares (OLS) regression learns the weights by minimizing MSE on training data:

$$\hat{w}_0, \hat{\mathbf{w}} = \operatorname*{argmin}_{w_0, \mathbf{w}} MSE(w_0, \mathbf{w}) = \operatorname*{argmin}_{w_0, \mathbf{w}} \frac{1}{|Tr|} \sum_{(x, y) \in Tr} ((w_0 + \mathbf{w} \cdot \mathbf{x}) - y)^2$$

• Let's add a feature, which is always 1

$$\mathbf{x} = (x_1, \dots, x_d) \to \mathbf{x'} = (1, x_1, \dots, x_d) = (x_0, x_1, \dots, x_d)$$

Multivariate OLS

• Linear model:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i$$

• Ordinary least squares (OLS) regression learns the weights by minimizing MSE on training data:

$$\hat{w}_0, \hat{\mathbf{w}} = \operatorname*{argmin}_{w_0, \mathbf{w}} MSE(w_0, \mathbf{w}) = \operatorname*{argmin}_{w_0, \mathbf{w}} \frac{1}{|Tr|} \sum_{(x, y) \in Tr} ((w_0 + \mathbf{w} \cdot \mathbf{x}) - y)^2$$

• Let's add a feature, which is always 1

$$\mathbf{x} = (x_1, \dots, x_d) \to \mathbf{x}' = (1, x_1, \dots, x_d) = (x_0, x_1, \dots, x_d)$$

$$\hat{f}(\mathbf{x}') = \mathbf{w}' \cdot \mathbf{x}' = \sum_{i=0}^{d} w_i x_i$$

Multivariate OLS

• Linear model:

$$\hat{f}(\mathbf{x}) = w_0 + \mathbf{w} \cdot \mathbf{x} = w_0 + \sum_{i=1}^d w_i x_i$$

• Ordinary least squares (OLS) regression learns the weights by minimizing MSE on training data:

$$\hat{w}_0, \hat{\mathbf{w}} = \operatorname*{argmin}_{w_0, \mathbf{w}} MSE(w_0, \mathbf{w}) = \operatorname*{argmin}_{w_0, \mathbf{w}} \frac{1}{|Tr|} \sum_{(x, y) \in Tr} ((w_0 + \mathbf{w} \cdot \mathbf{x}) - y)^2$$

• Let's add a feature, which is always 1

$$\mathbf{x} = (x_1, \dots, x_d) \to \mathbf{x}' = (1, x_1, \dots, x_d) = (x_0, x_1, \dots, x_d)$$

$$\hat{f}(\mathbf{x}') = \mathbf{w}' \cdot \mathbf{x}' = \sum_{i=0}^{d} w_i x_i$$

from now on we will skip the ' for simplicity

FAST Foundation

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w}} MSE(\mathbf{w}) = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{|Tr|} \sum_{(\mathbf{x}, y) \in Tr} (\mathbf{w} \cdot \mathbf{x} - y)^2$$

2

メロト メポト メヨト メヨト

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w}} MSE(\mathbf{w}) = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{|Tr|} \sum_{(\mathbf{x}, y) \in Tr} (\mathbf{w} \cdot \mathbf{x} - y)^2$$

• Denote the training instances by $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^{d+1} \times \mathbb{R}$

Image: A matrix and a matrix

э

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w}} MSE(\mathbf{w}) = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{|Tr|} \sum_{(\mathbf{x}, y) \in Tr} (\mathbf{w} \cdot \mathbf{x} - y)^2$$

- Denote the training instances by $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^{d+1} \times \mathbb{R}$
- Denote the residual errors on instances by:

$$e_1 = y_1 - \mathbf{x}_1 \cdot \mathbf{w}, \dots, e_n = y_n - \mathbf{x}_n \cdot \mathbf{w}$$

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w}} MSE(\mathbf{w}) = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{|Tr|} \sum_{(\mathbf{x}, y) \in Tr} (\mathbf{w} \cdot \mathbf{x} - y)^2$$

- Denote the training instances by $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^{d+1} \times \mathbb{R}$
- Denote the residual errors on instances by:

$$e_1 = y_1 - \mathbf{x}_1 \cdot \mathbf{w}, \dots, e_n = y_n - \mathbf{x}_n \cdot \mathbf{w}$$

 $\bullet\,$ In matrix form: $\mathbf{e}=\mathbf{y}-\mathbf{X}\mathbf{w}$

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w}} \sum_{i=1}^{n} e_i^2 = \operatorname*{argmin}_{\mathbf{w}} \mathbf{e} \cdot \mathbf{e} = \operatorname*{argmin}_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w}) \cdot (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w}} MSE(\mathbf{w}) = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{|Tr|} \sum_{(\mathbf{x}, y) \in Tr} (\mathbf{w} \cdot \mathbf{x} - y)^2$$

- Denote the training instances by $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^{d+1} \times \mathbb{R}$
- Denote the residual errors on instances by:

$$e_1 = y_1 - \mathbf{x}_1 \cdot \mathbf{w}, \dots, e_n = y_n - \mathbf{x}_n \cdot \mathbf{w}$$

• In matrix form: $\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{w}$

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w}} \sum_{i=1}^{n} e_i^2 = \operatorname*{argmin}_{\mathbf{w}} \mathbf{e} \cdot \mathbf{e} = \operatorname*{argmin}_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w}) \cdot (\mathbf{y} - \mathbf{X}\mathbf{w})$$

To solve this we equate the gradient to zero:

$$\frac{\partial (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})}{\partial \mathbf{w}} = 0$$

$$\frac{\partial (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})}{\partial \mathbf{w}} =$$

- ∢ 🗗 ▶

э

$$\frac{\partial (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$

$$\frac{\partial (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$
$$\mathbf{X}^T \mathbf{X}\mathbf{w} = \mathbf{X}^T \mathbf{y}$$

$$\frac{\partial (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$
$$\mathbf{X}^T \mathbf{X}\mathbf{w} = \mathbf{X}^T \mathbf{y}$$
$$(\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{X}) \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$

$$\frac{\partial (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$
$$\mathbf{X}^T \mathbf{X}\mathbf{w} = \mathbf{X}^T \mathbf{y}$$
$$(\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{X}) \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$
$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$

$$\frac{\partial (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$
$$\mathbf{X}^T \mathbf{X}\mathbf{w} = \mathbf{X}^T \mathbf{y}$$
$$(\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{X}) \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$
$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$

For multivariate OLS there exists a **closed-form solution** (i.e. can be explicitly calculated without numerical optimization):

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w}) \cdot (\mathbf{y} - \mathbf{X}\mathbf{w}) = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$

Pro: if the number of instances is much bigger than the number of features, then OLS works quite well

- **Pro:** if the number of instances is much bigger than the number of features, then OLS works quite well
- **Con:** otherwise OLS tends to overfit the noise, particularly if there is a lot of noise in the data

- **Pro:** if the number of instances is much bigger than the number of features, then OLS works quite well
- **Con:** otherwise OLS tends to overfit the noise, particularly if there is a lot of noise in the data
- **Con:** if many features are collinear (highly correlated) then OLS tends to overfit

- \checkmark Main concepts in regression
- ✓ Linear Regression
- ✓ Ordinary Least Squares (OLS)