
Machine Learning
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Topics of previous lectures

X Ingredients of Machine Learning

X Classification Basics, Basic Linear Classifier

X K-Nearest Neighbours Classifier

X Naive Bayes Classifier

X Linear and Quadratic Discriminant Analysis

X Support Vector Machines (SVM)

X Decision Trees

X Ensemble Methods (Bagging, Weighted Voting, Stacking)

X Linear Regression
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Topics of today’s lecture

Regularization

Logistic Regression

Softmax Classifier

Support Vector Regression (SVR)

Regression Trees

Evaluation and Scoring of Classifiers
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Regularization

The main idea of regularization in machine learning is to penalize
complex models

If two models have a similar loss on the training data then the simpler
tends to be better on test data

Simpler models have less capacity to overfit the noise
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Ridge regression

Ridge regression is a regularisation (also known as L2-norm
regularization) method for linear regression

It regularises the task by penalising vector length:

ŵ = argmin
w

(
(y −Xw)T (y −Xw) + λ‖w‖2

)
Here λ is a regularisation parameter, which we can choose by
cross-validation:
– Higher λ means stronger regularization
– If λ = 0 then we are back at OLS
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Calculating the partial derivatives

ŵ = argmin
w

(
(y −Xw)T (y −Xw) + λ‖w‖2

)
Based on properties of matrix derivatives:

∂
(

(y −Xw)T (y −Xw) + λwTw
)

∂w
=

For ridge regression there exists a closed-form solution (i.e. can be
explicitly calculated without numerical optimization):

ŵ = (XTX + λI)−1(XTy)

FAST Foundation Regression Methods 2 7 December 2020 6 / 35



Calculating the partial derivatives
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ŵ = argmin
w

(
(y −Xw)T (y −Xw) + λ‖w‖2

)
Based on properties of matrix derivatives:

∂
(

(y −Xw)T (y −Xw) + λwTw
)

∂w
= −2XT (y −Xw) + 2λw = 0

XTXw + λw = XTy

(XTX + λI)w = XTy

For ridge regression there exists a closed-form solution (i.e. can be
explicitly calculated without numerical optimization):
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Ridge regression

Pro: effective in reducing overfitting compared to OLS

Con: all coefficients are still non-zero, even if the true model is very sparse
(very few non-zero coefficients)
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Lasso regression

Lasso regression is another regularisation (also known as L1-norm
regularization) method for linear regression

It regularises the task by penalising the sum of absolute values of
weights:

ŵ = argmin
w

(
(y −Xw)T (y −Xw) + λ

d∑
i=1

|wi|
)

No closed-form solution exists, must be optimised numerically
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Lasso vs Ridge regression

Lasso can produce sparse solutions:
– Many coefficients are exactly zero
– How many? Depends on λ

This is beneficial for two reasons:
– The learned model becomes easier to interpret
– If the true model is sparse, then lasso tends to give lower test MSE
than ridge regression

The parameter can be learned by using a hold-out validation dataset
or K-fold cross-validation
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Lasso regression

Pro: if the true model is sparse then outperforms ridge regression and OLS

Con: if several features are highly correlated then tends to put high weight
on an arbitrary one of those and zero to others
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Logistic Regression

Despite the name, logistic regression is a classification method, or
it can be view as a regression method restriced into [0, 1] interval

We have used Linear Regression when y was continuous, but will it
be easily used when y is binary?

We need a way to transform the predictions, so that we can get
binary labels, instead of continous quantites

We can use the logistic sigmoid function on the predictions!

σ(wTx) =
1

1 + e−wTx

In Logistic Regression the parameters are usually fit by maximum
likelihood method (see Lecture 3)
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MLE for Logistic Regression

The likelihood function will be

L =

n∏
i=1

pyii (1− pi)1−yi ,

where pi = P (yi = ⊕|xi) = σ(wTxi)

It is more convenient to work with the log likelihood function

log(L) =
∑
i

log(pyii (1− pi)1−yi)

=
∑
i

(
log(pyii ) + log((1− pi)1−yi)

)
=

=
∑
i

(
yi log(pi) + (1− yi) log(1− pi)

)
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Does this look familiar?
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

∂ log(L(w))

∂w
=

∂

∂w

∑
i

(yi log(σ(wTxi)) + (1− yi) log(1− σ(wTxi))) =
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

∂ log(L(w))
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This system of equalities is hard to solve directly!
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Logistic Regression Solution

The above system of equalities is hard to solve directly

Instead, it is easier to optimize

argmin
w

−
∑
i

(
yi log(pi) + (1− yi) log(1− pi)

)
This can be done with a numerical method such as gradient descent

The loss function that logistic regression minimizes is known as cross
entropy (also known as log-loss or binomial deviance)
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Softmax Classifier

Softmax classifier is the multi-class generalization of Logistic
Regression

In case of a C class classification task, we will have a weight matrix
W of size C × (d+ 1), instead of a d+ 1 dimensional vector

The softmax function is used on each of the prediction scores

fj(z) =
ezj∑
k e

zk
, where zj = Wjx

T , z = WxT

The loss function will be cross-entropy again

L(y, f(x)) = −
C∑
j=1

yj log fj(z),

where y is a one-hot encoded vector for the ground truth class.

The problem can be solved with gradient descent.
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Support Vector Machine (SVM) for Classification
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Hard-margin SVM for classification

w∗, t∗ = argmin
w,t

1

2
‖w‖2

subject to yi(w · xi − t) ≥ 1, yi ∈ {−1, 1}, i = 1, . . . , n
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Soft-margin SVM for classification

w∗, t∗, ξ∗i = argmin
w,t,ξi
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2
‖w‖2+C

n∑
i=1
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subject to yi(w · xi − t) ≥ 1−ξi, ξi ≥ 0, i = 1, . . . , n
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SVM for Regression
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f(x) = wx+ t



Support Vector Regression

min
w,t,ξi,ξ

′
i

1

2
‖w‖2+C

n∑
i=1

(ξi + ξ
′
i)

subject to yi −w · xi − t ≤ ε+ξi, ξi ≥ 0

w · xi + t− yi ≤ ε+ξ
′
i, ξ

′
i ≥ 0, i = 1, . . . , n
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Can we apply kernels in this case?



Kernel SVR

Fitting (soft-margin kernel SVR):

max
α;α′
−1

2
(α−α′)TQ(α−α′) + εeT (α + α′)− yT (α−α′)

subject to 0 ≤ αi, α
′
i ≤ C, i = 1, . . . , n and eT (α−α′) = 0

where Q = κ(xi,xj) and e = (1, . . . , 1)T

t∗ = yj − ε−
n∑
i=1

(αi − α
′
i)κ(xi,xj),

where xj is a support vector of target value yj .

Prediction:

f̂(x) =
n∑
i=1

(αi − α
′
i)κ(xi,x) + t∗
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Regression Trees

In order to adapt decision trees to regression problem, we need to
think about a suitable impurity function

We can use the weighted average variance of the target values as
the measure of impurity

If a split partitions the set of target values Y into mutually exclusive
sets {Y1, ..., Yl}, the weighted average variance is then

Var({Y1, ..., Yl}) =

l∑
j=1

|Yj |
|Y |

Var(Yj) =
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Regression Trees

A split is considered good if it maximizes the impurity gain:

Imp(D)− Imp({D1, . . . , Dl})

the overall impurity of child nodes should be maximally smaller than
the impurity of the parent D

In case of regression we take Imp = Var and we base our decision on
variance reduction

Each leaf returns the average target value of the segment
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Evaluating Classification Performance

Accuracy and the error rate are the primary evaluation measures of
classifiers

Accuracy is the proportion of correctly classified instances, its value
on the test set is

acc =
1

|Te|
∑
x∈Te

1{f̂(x)=f(x)}

Error rate is the complement of accuracy, that is the proportion of
incorrectly classified instances

err =
1

|Te|
∑
x∈Te

1{f̂(x)6=f(x)} = 1− acc

Test set error rate can be seen as an estimate of the probability of the
model error on a random instance x ∈ X from the instance space

P(f̂(x) 6= f(x))
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Confusion Matrix

Often it is useful to see the kind of errors that the classifier makes

This example of a confusion matrix (also known as contingency table)
shows prediction performance on 100 instances
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Famous Meme
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Terminology in binary classification

The elements in the confusion matrix are called as follows:

We will denote

acc = TP+TN
|Te| and err = FP+FN

|Te|
There are many other evaluation measures
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Other measures

Often it is usual to assess the classifier separately on positives and
negatives

True positive rate(also known as sensitivity, recall) is the
proportion of positives correctly classified TPR = TP

Pos = rec

True negative rate(also known as specificity) is the proportion of
negatives correctly classified (accuracy on the negatives) TNR = TN

Neg

False negative rate(also known as miss rate) FNR = FN
Pos

False positive rate(also known as false alarm rate) FPR = FP
Neg

Precision (also known as positive predictive value) is the proportion
of actual positives among predicted positives prec = TP

PPos

F-measure is the harmonic mean of precision and recall F = 2·prec·rec
prec+rec
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Imbalanced costs

In imbalanced tasks the costs are also often imbalanced
– False positives and false negatives can have very different costs

We want to have many true positives, without having many false
positives

For example in medical diagnostic testing
– Few disease cases (positive class) – Many healthy cases (negative
class)
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Trade-off between TPR and FPR

A classifier that outputs binary label hits a particular balance between
TPR and FPR

This cannot be changed without learning a new classifier

A better solution: ask classifiers to output scores:
– Higher score means more likely positive
– Lower score means more likely negative

By choosing the decision threshold we can change trade-off between
TPR and FPR
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Scoring classifiers for TP/FP trade-off

Most classification models can output scores in addition to labels

KNN (K nearest neighbours):
– Score = proportion of positive neighbours

SVM (support vector machine):
– Score = signed distance to the decision boundary

DT (decision tree):
– Score = proportion of positive instances in the decision leaf

RF (random forest):
– Score = proportion of trees predicting positive
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Scoring for SVM
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Example
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Example
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This curve is called the Receiver
Operating Characteristic (ROC) and
the area under it is denoted as AUC
and for an ideal classifier it should be
close to 1



Typical comparison of classifiers
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What have we learned today?

X Regularization

X Logistic Regression

X Softmax Classifier

X Support Vector Regression (SVR)

X Regression Trees

X Evaluation and Scoring of Classifiers
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