Machine Learning

Regression Methods 2

FAS I DISCOVERING
THE FUTURE



Topics of previous lectures

NN NN N N SN

Ingredients of Machine Learning

Classification Basics, Basic Linear Classifier

K-Nearest Neighbours Classifier

Naive Bayes Classifier

Linear and Quadratic Discriminant Analysis

Support Vector Machines (SVM)

Decision Trees

Ensemble Methods (Bagging, Weighted Voting, Stacking)

Linear Regression
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Topics of today's lecture

@ Regularization

o Logistic Regression

@ Softmax Classifier

@ Support Vector Regression (SVR)
@ Regression Trees

@ Evaluation and Scoring of Classifiers
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Regularization

@ The main idea of regularization in machine learning is to penalize
complex models
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Regularization

@ The main idea of regularization in machine learning is to penalize
complex models

@ If two models have a similar loss on the training data then the simpler
tends to be better on test data

@ Simpler models have less capacity to overfit the noise
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Ridge regression

e Ridge regression is a regularisation (also known as L2-norm
regularization) method for linear regression
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Ridge regression

e Ridge regression is a regularisation (also known as L2-norm
regularization) method for linear regression

@ It regularises the task by penalising vector length:

W = argmin ((y —Xw)T(y — Xw) + )\||w||2>

w
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Ridge regression

e Ridge regression is a regularisation (also known as L2-norm
regularization) method for linear regression

@ It regularises the task by penalising vector length:
W = argmin ((y —Xw)T(y — Xw) + )\||w||2>
W

@ Here X is a regularisation parameter, which we can choose by
cross-validation:
— Higher A\ means stronger regularization
— If A =0 then we are back at OLS
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Calculating the partial derivatives

W = argmin ((y —Xw)l(y - Xw) + )\HW||2)

@ Based on properties of matrix derivatives:

8((y —Xw)(y — Xw) + )\WTW> B
ow
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Calculating the partial derivatives

W = argmin ((y — Xw)l(y - Xw) + /\HWHQ)

@ Based on properties of matrix derivatives:

8((y — Xw)T(y — Xw) + /\WTW>

g = 22X (y — Xw) +2\w =0
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Calculating the partial derivatives

W = argmin ((y — Xw)l(y - Xw) + )\HW||2)

@ Based on properties of matrix derivatives:

3<(y — Xw) ' (y — Xw) + /\WTW>
ow

= 2XT(y —Xw) + 22w =0
XTXw 4+ Aw = Xy
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Calculating the partial derivatives

W = argmin ((y — Xw)l(y - Xw) + )\HW||2)

@ Based on properties of matrix derivatives:

8<(y — Xw) ' (y — Xw) + /\WTW>

o = 2XT(y —Xw) + 22w =0

XT'Xw +xw = XTy
(XTX + M\D)w = XTy
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Calculating the partial derivatives

W = argmin ((y — Xw)l(y - Xw) + )\HW||2)

@ Based on properties of matrix derivatives:
8<(y —Xw)T(y — Xw) + )\WTW>
ow

= 2XT(y —Xw)+2\w =0
XTXw 4+ 2w = XTy
(XTX + \D)w = XTy

(XTX + M) HXTX 4+ AD)w = (XTX + A1) 1 (XTy)
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Calculating the partial derivatives

W = argmin ((y — Xw)l(y - Xw) + )\HW||2)

@ Based on properties of matrix derivatives:
8<(y —Xw)T(y — Xw) + )\WTW>
ow

= 2XT(y —Xw) + 2w =0
XTXw 4+ 2w = XTy
(XTX + \D)w = XTy
(XTX + M) HXTX 4+ AD)w = (XTX + A1) 1 (XTy)
w=(X"X+A)" (XTy)
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Calculating the partial derivatives

W = argmin ((y — Xw)l(y - Xw) + )\HW||2)

@ Based on properties of matrix derivatives:
8((y —Xw)T(y — Xw) + )\WTW>
ow

= 2XT(y — Xw) +2\w =0
XTXw 4+ 2w = XTy
(XTX + \D)w = XTy
(XTX + M) HXTX 4+ AD)w = (XTX + A1) 1 (XTy)
w=(X"X+A)" (XTy)

@ For ridge regression there exists a closed-form solution (i.e. can be
explicitly calculated without numerical optimization):

w = (XTX + A1) 1 (XTy)
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Ridge regression

Pro: effective in reducing overfitting compared to OLS
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Ridge regression

Pro: effective in reducing overfitting compared to OLS

Con: all coefficients are still non-zero, even if the true model is very sparse
(very few non-zero coefficients)
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Lasso regression

@ Lasso regression is another regularisation (also known as L1-norm
regularization) method for linear regression
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Lasso regression

@ Lasso regression is another regularisation (also known as L1-norm
regularization) method for linear regression
@ It regularises the task by penalising the sum of absolute values of
weights:
d
W = argmin ((y —Xw) ' (y — Xw) + A Z |wl|)

w i=1
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Lasso regression

@ Lasso regression is another regularisation (also known as L1-norm
regularization) method for linear regression

@ It regularises the task by penalising the sum of absolute values of
weights:

d
W = argmin ((y —Xw) ' (y — Xw) + A Z |wz|)
w =1

@ No closed-form solution exists, must be optimised numerically
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Lasso vs Ridge regression

@ Lasso can produce sparse solutions:
— Many coefficients are exactly zero
— How many? Depends on A
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Lasso vs Ridge regression

@ Lasso can produce sparse solutions:
— Many coefficients are exactly zero
— How many? Depends on A

@ This is beneficial for two reasons:

— The learned model becomes easier to interpret
— If the true model is sparse, then lasso tends to give lower test MSE

than ridge regression
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Lasso vs Ridge regression

@ Lasso can produce sparse solutions:
— Many coefficients are exactly zero
— How many? Depends on A

@ This is beneficial for two reasons:
— The learned model becomes easier to interpret
— If the true model is sparse, then lasso tends to give lower test MSE
than ridge regression

@ The parameter can be learned by using a hold-out validation dataset
or K-fold cross-validation
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Lasso regression

Pro: if the true model is sparse then outperforms ridge regression and OLS
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Lasso regression

Pro: if the true model is sparse then outperforms ridge regression and OLS

Con: if several features are highly correlated then tends to put high weight
on an arbitrary one of those and zero to others
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Logistic Regression

@ Despite the name, logistic regression is a classification method, or
it can be view as a regression method restriced into [0, 1] interval
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Logistic Regression

@ Despite the name, logistic regression is a classification method, or
it can be view as a regression method restriced into [0, 1] interval

@ We have used Linear Regression when y was continuous, but will it
be easily used when y is binary?
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Logistic Regression

@ Despite the name, logistic regression is a classification method, or
it can be view as a regression method restriced into [0, 1] interval

@ We have used Linear Regression when y was continuous, but will it
be easily used when y is binary?

@ We need a way to transform the predictions, so that we can get
binary labels, instead of continous quantites
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Logistic Regression

@ Despite the name, logistic regression is a classification method, or
it can be view as a regression method restriced into [0, 1] interval

@ We have used Linear Regression when y was continuous, but will it
be easily used when y is binary?

@ We need a way to transform the predictions, so that we can get
binary labels, instead of continous quantites

@ We can use the logistic sigmoid function on the predictions!

|
T
oW x) = s
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Logistic Regression

Despite the name, logistic regression is a classification method, or
it can be view as a regression method restriced into [0, 1] interval

@ We have used Linear Regression when y was continuous, but will it
be easily used when y is binary?

We need a way to transform the predictions, so that we can get
binary labels, instead of continous quantites

@ We can use the logistic sigmoid function on the predictions!

|
T
oW x) = s

In Logistic Regression the parameters are usually fit by maximum
likelihood method (see Lecture 3)
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MLE for Logistic Regression

@ The likelihood function will be
n

L= Hpii(l _pi)liyiv
i=1

where p; = P(y; = ®|x;) = o(wlx;)
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MLE for Logistic Regression

@ The likelihood function will be
n

L=]]nr—p)',
i=1

where p; = P(y; = ®[x;) = o(w’x;)

@ It is more convenient to work with the log likelihood function
log(L) = >_log(p}" (1 = pi)'™*)
= Z <1og(p?") +log((1 - pi)l‘yi)) =
= Z (yz- log(pi) + (1 — i) log(1 —pi))

Does this look familiar?
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

9log(L(w))

ow - 8% Z(yi log(o(w'x;)) + (1 — y;) log(1 — o(w'x;))) =
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

alogégfv(w» - 82\; Z(yi log(o(w'x;)) + (1 — y;) log(1 — o(w'x;))) =

=2 WTXZ (oW

+ Z 1 —o( waZ 38 (1- U(WTXZ))) =
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

aloga(va(W)) - ai, Z(yi log(o(w'x;)) + (1 — yi) log(1 — o(w'x;))) =

= b e )
+ Z 1 —o( wa Ba (1-o(w'x))) =

d
the derivative of sigmoid is d—a(z) =0(2)(1 —0o(z))
z
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

PIOBL) _ 05 togfo(wx)) + (1~ o) log(1 — o(wx.) =

d
the derivative of sigmoid is @U(Z) =0(2)(1 —0(z2))

- Z — (W) (1 — o (wTx:))xi)+
" Z(—ia(w%(l — o (wxi)x)
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

abga(fv(w)) - 82\/ Z(yi log(o(wx;)) + (1 — yi) log(1 — o(w'x;))) =

_zw—awx@ P+ S0 = oot =
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

0log(L(w))

ow - aiv Z(yi log(o(whx;)) + (1 — yi)log(1 — o(w'x;))) =

_Zyzl—UW xz xz +Z 1—.% WTXZ)Xz)—
= Z xi(yi — yio(whx;) — O’(WTXZ) +yio(wlx;))) =
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

310%55}(“’)) - ai Z yilog(o(w'x;)) + (1 — i) log(1 — o(w'x;))) =
_Zyll—aw X;))X;) +Z (1—vi)o WTXZ)XZ)—

= Z X (Yi wal) — J(WTXZ) + yio (WTXi))) =

—sz Yi wxz))—O
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

3108"8(@(‘?")) - 82v Z(yi log(o(w'x;)) + (1 — y;) log(1 — o(w'x;))) =
_Zyllfdw Xz Xz +Z 17y1 WTX’i)Xi):

= (xi(yi — yio(w'x;) — U(WTXz') +yio(wixy))) =

= xi(yi —o(w'x;)) =0

szyz ZX’L w’ Xz

7
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MLE for Logistic Regression

Now that we have the log likelihood function, we can compute the partial
derivative w.r.t. w

9log(L(w))

ow - c‘iv Z(yi log(o(w'x;)) + (1 — y;) log(1 — o(w'x;))) =

—Zyzl—UW xz Xz +Z 1—.% WTXZ)Xz)—

=) xi(yi —vio (WTXz')—G(WTXz)+yiU(WTXi)))=

Z XiYi = Z x;0(wlx;)
i i

This system of equalities is hard to solve directly!
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Logistic Regression Solution

@ The above system of equalities is hard to solve directly
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Logistic Regression Solution

@ The above system of equalities is hard to solve directly

@ Instead, it is easier to optimize

argvrvnin - Z (yi log(pi) + (1 — i) log(1 — Pi))
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Logistic Regression Solution

@ The above system of equalities is hard to solve directly

@ Instead, it is easier to optimize
argmin — ) (yi log(pi) + (1 — ;) log(1 — Pi))
W .
1

@ This can be done with a numerical method such as gradient descent
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Logistic Regression Solution

The above system of equalities is hard to solve directly

@ Instead, it is easier to optimize

argvrvnin - Z (y log(pi) + (1 — i) log(1 — Pi))

This can be done with a numerical method such as gradient descent

@ The loss function that logistic regression minimizes is known as cross
entropy (also known as log-loss or binomial deviance)
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Softmax Classifier

@ Softmax classifier is the multi-class generalization of Logistic
Regression
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Softmax Classifier

@ Softmax classifier is the multi-class generalization of Logistic
Regression

@ In case of a C class classification task, we will have a weight matrix
W of size C' x (d+ 1), instead of a d + 1 dimensional vector
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Softmax Classifier

@ Softmax classifier is the multi-class generalization of Logistic
Regression

@ In case of a C class classification task, we will have a weight matrix
W of size C' x (d+ 1), instead of a d + 1 dimensional vector
@ The softmax function is used on each of the prediction scores

2

eI

= ﬁ, where Z]' = V‘/]’XT,Z = @»XT
k€

fi(z)
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Softmax Classifier

@ Softmax classifier is the multi-class generalization of Logistic
Regression

@ In case of a C class classification task, we will have a weight matrix
W of size C' x (d+ 1), instead of a d + 1 dimensional vector

@ The softmax function is used on each of the prediction scores

e?i
(2) = —=——— where  z; = W.x! z=Wx!
J Vi Vi )

g e

@ The loss function will be cross-entropy again
c
L(y, f(x)) = =) _ y;log fi(z),
j=1
where y is a one-hot encoded vector for the ground truth class.
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Softmax Classifier

@ Softmax classifier is the multi-class generalization of Logistic
Regression

@ In case of a C class classification task, we will have a weight matrix
W of size C' x (d+ 1), instead of a d + 1 dimensional vector

@ The softmax function is used on each of the prediction scores

e?i
(2) = —=——— where  z; = W.x! z=Wx!
J Vi Vi )

g e

@ The loss function will be cross-entropy again
c
L(y, f(x)) = =) _ y;log fi(z),
j=1
where y is a one-hot encoded vector for the ground truth class.

@ The problem can be solved with gradient descent.

FAST Foundation Regression Methods 2 7 December 2020 15/35



Support Vector Machine (SVM) for Classification

These 3 instances /’ @
are support vectors
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Hard-margin SVM for classification

1
w*, t* = argmin — || w||?
w,t 2

subject to y;(w-x; —t) > 1, y, €{-1,1}, i=1,...,n
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Hard-margin SVM for classification

1
w*, t* = argmin §||WH2
w,t

subject to y;(w-x; —t) > 1, y,€{-1,1}, i=1,....n

We can solve the equivalent dual problem

al, ..., —argrnax—f E E QG 0G Y YK - X+ E o

A5, Qn = 1] 1

n
subject to ; > 0, i=1,...,n and Zaiyi =0
i=1
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Hard-margin SVM for classification

1
w*, t* = argmin — ||w||2
w,t

subject to y;(w-x; —t) > 1, y, €{-1,1}, i=1,...,n

We can solve the equivalent dual problem

al,...,o —argmax—fg E G0 YY XK Xj—i-g o

AL,..,Qn i=1 j=1

n
subjecttoa; >0, ¢=1,...,n and Zaiyi =0
i=1
From the result we can calculate:

n
* * *
= g ; YiX; U =w -X; — Y,

where x; is a support vector and «; is its weight.

FAST Foundation Regression Methods 2 7 December 2020 17 /35



Soft-margin SVM for classification

1 n
w* t* ¢ = argmin §||w||2+(7 Z &

W,t.f,‘ i—=1

subject to y;(w-x; —t) > 1-&, & >0, i=1,...,n
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Soft-margin SVM for classification

wh ittt = argmlanWH +(‘Z£I

Wit ,&i 1=1
subject to y;(w-x; —t) > 1-¢, & >0, i=1,...,n

We can solve the equivalent dual problem

of, = argmax —— Z Z Q05 Y YXs - X+ Z Qo

Ay, X ’Ll]l

n
subjectto 0 < ;< (', +=1,...,n and Zaiyi =0
i=1
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Soft-margin SVM for classification

1 n
* gk gk : 2 )
wh ) = argmin SlIwl*+C § &
2N =1

subject to y;(w-x; —t) > 1-¢, & >0, i=1,...,n

We can solve the equivalent dual problem

aj,. = argmax —— Z Z G0G Y Y% - X5+ Z ;

AL5..,Qn 7,1] 1

n
subjectto0 < ;< ', i=1,...,n and Zaiyi =0
i=1
From the result we can calculate:

n
* * *
= g Q; YiX; U =w X — Y,

where x; is a support vector and «; is its weight.

FAST Foundation Regression Methods 2 7 December 2020



SVM for Regression

flz)=wz+t

Y
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Support Vector Regression

n

. 2. ’
min | w4006+ €)

W’t?£l7£1 i—1
subject to y; —w-x; —t < e+, & >0
weoxi+t—y <etl, & >0, i=1,....n
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Support Vector Regression

n

Jin gl O3 )
subjecttoy; —w-x; —t <et+&, & >0
WX+t —y; SEJrf,/-, {: >0, i=1,...,n
We can solve the equivalent dual problem

max —%(a —a)TQa—-d) —eeT(a+d)+y"(a—d)

a;a’

subject to 0 < ai,a;§ C, i=1,...,nand ef(a—a/) =0

where Q =xxT and e = (1,...,1)T

FAST Foundation Regression Methods 2 7 December 2020 20/35



Support Vector Regression

min_ J|/w] wZ & +6)

Wt{/ &,
subjecttoy; —w-x; —t < e+&, & >0

weoxi+t—y <etl, & >0, i=1,....n
We can solve the equivalent dual problem

[a 8%

max—%(a N TQa—ad) - el (a+d)+yl(a—a)

subject to 0 < ai,a;§ C, i=1,..

where Q =xx? and e = (1,...,1)T X
From this we can calculate the prediction: f(x)

.,nand el (a—a’)=0

=w*.x+t, with
W*ZZ(O%—OC;)X@', =y —e—w"-x;
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Support Vector Regression

Can we apply kernels in this case? J

min_ J|/w] wZ & +6)

Wt{/ &,
subjecttoy; —w-x; —t < e+&, & >0

weoxi+t—y <etl, & >0, i=1,....n
We can solve the equivalent dual problem

[a 8%

max—%(a N TQa—ad) - el (a+d)+yl(a—a)

subject to 0 < ai,a;§ C, i=1,..

where Q =xx? and e = (1,...,1)T X
From this we can calculate the prediction: f(x)

.,nand el (a—a’)=0

=w*.x+t, with
W*ZZ(O%—OC;)X@', =y —e—w"-x;
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Kernel SVR

e Fitting (soft-margin kernel SVR):

1
max—g(a —a)Qa—-ad)+el(a+a)—y'(a-da)
oo’

subject to 0 < aj,; < C, i=1,...,nand e’ (a—a') =0
where Q = r(x;,x;) and e = (1,...,1)T

n

tt=y;—e— Z(az‘ — a)(xi,%;),

i=1

where x; is a support vector of target value y;.
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Kernel SVR

e Fitting (soft-margin kernel SVR):

1
max—g(a —a)Qa—-ad)+el(a+a)—y'(a-da)
oo’

subject to 0 < aj,; < C, i=1,...,nand e’ (a—a') =0
where Q = r(x;,x;) and e = (1,...,1)T

n

tt=y;—e— Z(az‘ — a)(xi,%;),

i=1
where x; is a support vector of target value y;.

@ Prediction:
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Regression Trees

@ In order to adapt decision trees to regression problem, we need to
think about a suitable impurity function
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Regression Trees

@ In order to adapt decision trees to regression problem, we need to
think about a suitable impurity function

@ We can use the weighted average variance of the target values as
the measure of impurity
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Regression Trees

@ In order to adapt decision trees to regression problem, we need to
think about a suitable impurity function

@ We can use the weighted average variance of the target values as
the measure of impurity

o If a split partitions the set of target values Y into mutually exclusive
sets {Y7,...,Y;}, the weighted average variance is then

Var({Y1,...,Y; Z ||Y\ =
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Regression Trees

@ In order to adapt decision trees to regression problem, we need to
think about a suitable impurity function

@ We can use the weighted average variance of the target values as
the measure of impurity

o If a split partitions the set of target values Y into mutually exclusive
sets {Y1, ..., Y} }, the weighted average variance is then

l l
Var({h, i) = 3 ’Y 277 2;
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Regression Trees

@ In order to adapt decision trees to regression problem, we need to
think about a suitable impurity function

@ We can use the weighted average variance of the target values as
the measure of impurity

o If a split partitions the set of target values Y into mutually exclusive
sets {Y7,...,Y;}, the weighted average variance is then

l 1
Var({Y1,...,Y; Z: Var ZT? 2;/
Loy 1
(F7 E; 7) =

J=1

FAST Foundation Regression Methods 2 7 December 2020 22/35



Regression Trees

@ In order to adapt decision trees to regression problem, we need to
think about a suitable impurity function

@ We can use the weighted average variance of the target values as
the measure of impurity

o If a split partitions the set of target values Y into mutually exclusive
sets {Y1, ..., Y} }, the weighted average variance is then

! !
Y; 2
Var({Ys, ...,V Z|Y Zl “Y"| oA Z (y—9)° =
>

yelY;|
REINE 2 _ 2 _
(Y v &Y y)
j=1 yelv;|
1 l
-3 E A2
Y ]1
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Regression Trees

@ A split is considered good if it maximizes the impurity gain:
Imp(D) — Imp({Dq,...,D;})

the overall impurity of child nodes should be maximally smaller than
the impurity of the parent D
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Regression Trees

@ A split is considered good if it maximizes the impurity gain:
Imp(D) — Imp({Dq,...,D;})
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Regression Trees

@ A split is considered good if it maximizes the impurity gain:
Imp(D) — Imp({Dq,...,D;})

the overall impurity of child nodes should be maximally smaller than
the impurity of the parent D

@ In case of regression we take Imp = Var and we base our decision on
variance reduction

@ Each leaf returns the average target value of the segment
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Evaluating Classification Performance

@ Accuracy and the error rate are the primary evaluation measures of
classifiers
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Evaluating Classification Performance

@ Accuracy and the error rate are the primary evaluation measures of
classifiers

@ Accuracy is the proportion of correctly classified instances, its value
on the test set is

act = \Te\ Z {F(x)=F(x)}

x€Te

@ Error rate is the complement of accuracy, that is the proportion of
incorrectly classified instances
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Evaluating Classification Performance

@ Accuracy and the error rate are the primary evaluation measures of
classifiers

@ Accuracy is the proportion of correctly classified instances, its value
on the test set is

act = \Te\ Z {F(x)=F(x)}

x€Te

@ Error rate is the complement of accuracy, that is the proportion of
incorrectly classified instances

€7a7ﬂ7|Te, D Ljeorso =1~

x€Te

o Test set error rate can be seen as an estimate of the probability of the
model error on a random instance x € X’ from the instance space

P(f(x) # f(x))
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Confusion Matrix

@ Often it is useful to see the kind of errors that the classifier makes

Predicted ® Predicted ©
Actual @ 30 20 50
Actual © 10 40 50
40 60 100
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Confusion Matrix

@ Often it is useful to see the kind of errors that the classifier makes

Predicted ® Predicted ©
Actual @ 30 20 50
Actual © 10 40 50
40 60 100

@ This example of a confusion matrix (also known as contingency table)
shows prediction performance on 100 instances
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Famous Meme

-

FALSE POSITIVE
N4
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Terminology in binary classification

@ The elements in the confusion matrix are called as follows:

Predicted & Predicted &
Actual & True positives False negatives Actual positives
Actual False positives True negatives Actual negatives
Predicted positives  Predicted negatives Total
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Actual & True positives False negatives Actual positives
Actual False positives True negatives Actual negatives
Predicted positives  Predicted negatives Total

o We will denote
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Terminology in binary classification

@ The elements in the confusion matrix are called as follows:

Predicted & Predicted &
Actual & True positives False negatives Actual positives
Actual False positives True negatives Actual negatives
Predicted positives  Predicted negatives Total

o We will denote

Predicted @ Predicted ©
Actual ® TP FN Pos
Actual © FP TN Neg
PPos PNeg | Te|
@ acc = % and err:%

@ There are many other evaluation measures
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Other measures

o Often it is usual to assess the classifier separately on positives and
negatives
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Other measures

o Often it is usual to assess the classifier separately on positives and
negatives

e True positive rate(also known as sensitivity, recall) is the

proportion of positives correctly classified TPR = % = rec

e True negative rate(also known as specificity) is the proportion of

negatives correctly classified (accuracy on the negatives) TNR = ]:\F,‘Q;

o False negative rate(also known as miss rate) FNR = £

e False positive rate(also known as false alarm rate) FFPR = 5;

e Precision (also known as positive predictive value) is the proportion
of actual positives among predicted positives prec =

PPos
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Other measures

o Often it is usual to assess the classifier separately on positives and
negatives

e True positive rate(also known as sensitivity, recall) is the

proportion of positives correctly classified TPR = 1%1

e True negative rate(also known as specificity) is the proportion of

= rec

negatives correctly classified (accuracy on the negatives) TNR = ]:\F,‘Q;
o False negative rate(also known as miss rate) FNR = £
e False positive rate(also known as false alarm rate) FFPR = 5:;

e Precision (also known as positive predictive value) is the proportion
of actual positives among predicted positives prec = P:';;]ZS

2-prec-rec

@ F-measure is the harmonic mean of precision and recall F' = prectrec
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Imbalanced costs

@ In imbalanced tasks the costs are also often imbalanced
— False positives and false negatives can have very different costs
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— False positives and false negatives can have very different costs

@ We want to have many true positives, without having many false
positives
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Imbalanced costs

@ In imbalanced tasks the costs are also often imbalanced
— False positives and false negatives can have very different costs

@ We want to have many true positives, without having many false
positives

@ For example in medical diagnostic testing
— Few disease cases (positive class) — Many healthy cases (negative
class)
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Trade-off between TPR and FPR

@ A classifier that outputs binary label hits a particular balance between
TPR and FPR
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Trade-off between TPR and FPR

@ A classifier that outputs binary label hits a particular balance between
TPR and FPR

@ This cannot be changed without learning a new classifier

@ A better solution: ask classifiers to output scores:
— Higher score means more likely positive
— Lower score means more likely negative

@ By choosing the decision threshold we can change trade-off between
TPR and FPR
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Scoring classifiers for TP /FP trade-off

@ Most classification models can output scores in addition to labels
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Scoring classifiers for TP /FP trade-off

@ Most classification models can output scores in addition to labels

o KNN (K nearest neighbours):
— Score = proportion of positive neighbours

@ SVM (support vector machine):
— Score = signed distance to the decision boundary

e DT (decision tree):
— Score = proportion of positive instances in the decision leaf
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Scoring classifiers for TP /FP trade-off

Most classification models can output scores in addition to labels

KNN (K nearest neighbours):
— Score = proportion of positive neighbours

SVM (support vector machine):
— Score = signed distance to the decision boundary

e DT (decision tree):
— Score = proportion of positive instances in the decision leaf

RF (random forest):
— Score = proportion of trees predicting positive

FAST Foundation Regression Methods 2 7 December 2020 31/35



Scoring for SVM

A Threshold A: p1-p2-p3-n1-p4-n2-n3-p5-n4-n5

8 Threshold B: p1-p2-p3-n1-p4-n2-n3-p5-n4-n5

¢ Threshold C: p1-p2-p3-n1-p4-n2-n3-p5-n4-n5
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True labels

1,0,1,0,1)

@ Classifier predicts

(0.6,0.2,0.7,0.5,0.4)
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True labels

1,1,0,1,0)

V

(0.7,0.6,0.5,0.4,0.2)
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True labels

1,1,0,1,0)

V

(0.7,0.6,0.5,0.4,0.2)

I

TPR = TP/P
FPR = FP/{FP 4 'TN)

TPR

FPR

FAST Foundation Regression Methods 2 7 December 2020



True labels

1,1,0,1,0)

V

(0.7,0.6,0.5,0.4,0.2)

I We would like to evaluate different strictness levels of our classifier

TPR = TP/P
FPR = FP/(FP + TN)

TPR_

FPR

33/35
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True labels

1,1,0,1,0)

V

(0.7,0.6,0.5,0.4,0.2)

TPR = TP/P
FPR = FP/(FP + TN)

What if consider as positive (1) only instances that were
predicted positive with >= 0.7 probability?

TPR_

‘ FPR
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True labels

1,1,0,1,0)

V4

(0.7,0.6,0.5,0.4,0.2)

TPR = TP/P
FPR = FP/(FP + TN)

What if consider as positive (1) only instances that were

predicted positive with >= 0.7 probability?
[ I What would TPR and FPR be in this case?
[a W
B

>=0.7 TPR=1/3
FPR = 0/(0 + 2)

FPR
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Example

TPR = TP/P
1,1,0,1,0)
FPR = FP/(FP + TN)
@ >=0.7 TPR=1/3 FPR=0

(07,06,05,04,02) Let’s plot this point on a graph

FPR
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TPR = TP/P
1,1,0,1,0) 4
FPR = FP/(FP + TN)
@ >=0.7 TPR=1/3 FPR=0

(0.7,0.6,0.5,0.4,0.2)

‘[ We shall do this procedure for all possible thresholds

1/3
I ' FPR
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True labels

1.1.01.0 TPR = TP/P
FPR = FP/(FP + TN)
@ >=0.7 TPR=1/3 FPR=0

(0.7,0.6,0.5,0.4,0.2) >=0.6 TPR=2/3 FPR=0
4 >=0.5 TPR = 2/3 FPR =1/2
>=0.4 TPR = 3/3 FPR =1/2
>=0.2 TPR = 3/3 FPR =2/2

TPR

—
~
w

FPR
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True labels

1,1,0,1,0)

TPR = TP/P
FPR = FP/(FP + TN)

@ >=0.7 TPR=1/3 FPR=0
(0.7,0.6,0.5,0.4,0.2) >=0.6 TPR=2/3 FPR=0
4 >=0.5 TPR = 2/3 FPR =1/2

>— N A TDD — 2/2 TDD —1/9
— This curve is called the Receiver

> Operating Characteristic (ROC) and
0 ~ the area under it is denoted as AUC

and for an ideal classifier it should be
I close to 1

TPR
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Typical comparison of classifiers

4
E _r_/-"_
0.8
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False positive rate
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What have we learned today?

v Regularization

v" Logistic Regression

v Softmax Classifier

v" Support Vector Regression (SVR)
v Regression Trees

v' Evaluation and Scoring of Classifiers
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