Mathematics for Machine Learning

Vazgen Mikayelyan

August 18, 2020

Series

V.	Mika	vel	van
			,

æ

イロト イヨト イヨト イヨト

Let
$$\{a_n\}_{n=1}^{\infty}$$
 is a sequence of real numbers. Denote $A_n = \sum_{k=1}^n a_k$.

æ

イロト イヨト イヨト イヨト

୬୯୯

Series

Let $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers. Denote $A_n = \sum_{k=1}^n a_k$. If there exists $\lim_{n \to \infty} A_n = A$, then we will write

$$A = \sum_{n=1}^{\infty} a_n.$$

Series

Let $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers. Denote $A_n = \sum_{k=1}^{n} a_k$. If there exists $\lim_{n \to \infty} A_n = A$, then we will write

$$A = \sum_{n=1}^{\infty} a_n.$$

Definition

The series $\sum_{n=1}^{\infty} a_n$ is called convergent if A is finite, otherwise it is called divergent.

If $\sum_{n=1}^{\infty} a_n$ is convergent, then $a_n \to 0$. The inverse is not true.

イロト イポト イヨト イヨト

3

Theorem ∞

If
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, then $a_n \to 0$. The inverse is not true.

3

• • = • • = •

Image: Image:

Theorem ∞

If
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, then $a_n \to 0$. The inverse is not true.

Proposition

If the series
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are convergent, then $\sum_{n=1}^{\infty} (a_n + b_n)$ is convergent too.

Theorem

The series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for every natural $n \ge n_0$ and m holds

$$|a_{n+1} + \ldots + a_{n+m}| < \varepsilon.$$

If $a_n \ge 0$ for all $n \in \mathbb{N}$ then $\sum_{n=1}^{\infty} a_n$ is convergent or it is equal to $+\infty$.

э

If $a_n \ge 0$ for all $n \in \mathbb{N}$ then $\sum_{n=1}^{\infty} a_n$ is convergent or it is equal to $+\infty$.

Theorem

 $\overline{n=1}$

If $a_n, b_n \ge 0$ and $a_n \le b_n$ for all $n \in \mathbb{N}$ then if $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent too.

If $a_n \ge 0$ for all $n \in \mathbb{N}$ then $\sum_{n=1}^{\infty} a_n$ is convergent or it is equal to $+\infty$.

Theorem

If
$$a_n, b_n \ge 0$$
 and $a_n \le b_n$ for all $n \in \mathbb{N}$ then if $\sum_{n=1}^{\infty} b_n$ is convergent, then

$$\sum\limits_{n=1}^{\infty} a_n$$
 is convergent too.

Theorem

If
$$a_n, b_n \ge 0$$
 for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = K$, $0 \le K < \infty$ then if $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent too.

Let
$$a_n \ge 0$$
 for all $n \in \mathbb{N}$ and $\overline{\lim_{n \to \infty} \sqrt[n]{a_n}} = K$. Then
if $K < 1$ then $\sum_{n=1}^{\infty} a_n$ is convergent,
if $K > 1$ then $\sum_{n=1}^{\infty} a_n$ is divergent.

3

メロト メポト メヨト メヨト

Let
$$a_n \ge 0$$
 for all $n \in \mathbb{N}$ and $\overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = K$. Then
1 if $K < 1$ then $\sum_{n=1}^{\infty} a_n$ is convergent,
2 if $K > 1$ then $\sum_{n=1}^{\infty} a_n$ is divergent.

Theorem

Let
$$a_n \ge 0$$
 for all $n \in \mathbb{N}$. Then
if $\overline{\lim_{n \to \infty}} \frac{a_{n+1}}{a_n} < 1$ then $\sum_{n=1}^{\infty} a_n$ is convergent,
if $\underline{\lim_{n \to \infty}} \frac{a_{n+1}}{a_n} > 1$ then $\sum_{n=1}^{\infty} a_n$ is divergent.

3

イロト イヨト イヨト イヨト

Let $f: X \to \mathbb{R}$ and X is an interval. F is called antiderivative of f if F' = f.

Let $f: X \to \mathbb{R}$ and X is an interval. F is called antiderivative of f if F' = f.

Proposition

If F_1 and F_2 are antiderivatives of f, then there exists a constant C such that $F_1 = F_2 + C$.

Let $f: X \to \mathbb{R}$ and X is an interval. F is called antiderivative of f if F' = f.

Proposition

If F_1 and F_2 are antiderivatives of f, then there exists a constant C such that $F_1 = F_2 + C$.

Definition

The set of all antiderivatives of function f is called indefinite integral of f:

$$\int f(x) \, dx = F(x) + C.$$

Properties

Properties

2 × 2

Properties

$$\int af(x) dx = a \int f(x) dx, a > 0$$

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

2 × 2

Properties

•
$$\int af(x) dx = a \int f(x) dx, a > 0$$

•
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

If the functions f (t) and $\varphi'(x)$ are continuous on the intervals T and X respectively and $\varphi(X) ⊂ T$ then

$$\int f(\varphi(x)) \varphi'(x) dx = F(\varphi(x)) + C.$$

< 151 ▶

Properties

•
$$\int af(x) dx = a \int f(x) dx, a > 0$$

•
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

If the functions f (t) and $\varphi'(x)$ are continuous on the intervals T and X respectively and $\varphi(X) ⊂ T$ then

$$\int f(\varphi(x)) \varphi'(x) dx = F(\varphi(x)) + C.$$

(a) If $f,g \in C^{1}(X)$, then

$$\int f dg = fg - \int g df.$$

The set of points $P = \{x_0, x_1, \dots, x_n\}$ is called a partition of the segment [a, b], if $a = x_0 < x_1 < \dots < x_n = b$.

э

The set of points $P = \{x_0, x_1, \dots, x_n\}$ is called a partition of the segment [a, b], if $a = x_0 < x_1 < \dots < x_n = b$. Denote $\Delta x_i = x_{i+1} - x_i$, $i = 0, \dots, n-1$. $\lambda = \max_{0 \le i < n} \Delta x_i$ is called diameter of the partition P.

The set of points $P = \{x_0, x_1, \dots, x_n\}$ is called a partition of the segment [a, b], if $a = x_0 < x_1 < \dots < x_n = b$. Denote $\Delta x_i = x_{i+1} - x_i$, $i = 0, \dots, n-1$. $\lambda = \max_{0 \le i < n} \Delta x_i$ is called diameter of the partition P.

Definition

Let
$$f : [a, b] \to \mathbb{R}$$
 and $\xi_i \in [x_i, x_{i+1}]$, $i = 0, ..., n-1$. The sum $\sigma = \sum_{i=0}^{n-1} f(\xi_i) \Delta x_i$ is called Riemann integral sum.

We will say that σ tends to I, when $\lambda \to 0$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any partition with diameter satisfying to $\lambda < \delta$ and for every Riemann inegral sum σ corresponding to that partitions holds $|\sigma - I| < \varepsilon$.

We will say that σ tends to I, when $\lambda \to 0$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any partition with diameter satisfying to $\lambda < \delta$ and for every Riemann inegral sum σ corresponding to that partitions holds $|\sigma - I| < \varepsilon$.

We will denote
$$I = \int_{a}^{b} f(x) dx$$
.

We will say that σ tends to I, when $\lambda \to 0$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any partition with diameter satisfying to $\lambda < \delta$ and for every Riemann inegral sum σ corresponding to that partitions holds $|\sigma - I| < \varepsilon$.

We will denote
$$I = \int_{a}^{b} f(x) dx$$
.

Theorem

If $f \in \mathcal{R}[a, b]$, then it is bounded. The inverse is not true.

Example

Dirichlet function is bounded but not integrable

$$D(x) = \begin{cases} 0, x \in \mathbb{Q} \cap [0, 1], \\ 1, x \notin \mathbb{Q} \cap [0, 1]. \end{cases}$$

э

Example

Dirichlet function is bounded but not integrable

$$D(x) = \begin{cases} 0, x \in \mathbb{Q} \cap [0, 1], \\ 1, x \notin \mathbb{Q} \cap [0, 1]. \end{cases}$$

Taking $\xi_i \in \mathbb{Q}$ for all *i*, we will have $\sigma = 0$ and in the case of $\xi_i \notin \mathbb{Q}$ for all *i* we will have $\sigma = 1$.

э

Let $X \subset \mathbb{R}$.

▶ ∢ ⊒

• • • • • • • •

2

Let $X \subset \mathbb{R}$.

Definition

 $a \in \mathbb{R}$ is called a lower (an upper) bound for X, if $a \leq x$ $(a \geq x)$ for all $x \in X$.

Let $X \subset \mathbb{R}$.

Definition

 $a \in \mathbb{R}$ is called a lower (an upper) bound for X, if $a \leq x$ $(a \geq x)$ for all $x \in X$.

Definition

A lower (an upper) bound $a \in \mathbb{R}$ of X is called a infimum (supremum) for X, if for all lower (upper) bounds a' for X holds $a' \leq a$ $(a' \geq a)$.

Let $X \subset \mathbb{R}$.

Definition

 $a \in \mathbb{R}$ is called a lower (an upper) bound for X, if $a \leq x$ $(a \geq x)$ for all $x \in X$.

Definition

A lower (an upper) bound $a \in \mathbb{R}$ of X is called a infimum (supremum) for X, if for all lower (upper) bounds a' for X holds $a' \leq a$ $(a' \geq a)$.

Theorem

If X is bounded from below (above), then it has an infimum (supremum).

Let $X \subset \mathbb{R}$.

Definition

 $a \in \mathbb{R}$ is called a lower (an upper) bound for X, if $a \leq x$ $(a \geq x)$ for all $x \in X$.

Definition

A lower (an upper) bound $a \in \mathbb{R}$ of X is called a infimum (supremum) for X, if for all lower (upper) bounds a' for X holds $a' \leq a$ $(a' \geq a)$.

Theorem

If X is bounded from below (above), then it has an infimum (supremum).

Remark

If X is not bounded from below (above), then we will denote $\inf X = -\infty$ (sup $X = +\infty$).

V. Mikayelyan

If $f : [a, b] \to \mathbb{R}$ is a bounded function, then it is integrable if and only if

$$\lim_{\lambda \to 0} \sum_{i=0}^{n-1} \omega_i \Delta x_i = 0,$$

where
$$\omega_i = M_i - m_i$$
, $M_i = \sup_{x \in [x_i, x_{i+1}]} f(x)$, $m_i = \inf_{x \in [x_i, x_{i+1}]} f(x)$.

If $f:[a,b] \to \mathbb{R}$ is a bounded function, then it is integrable if and only if

$$\lim_{\lambda \to 0} \sum_{i=0}^{n-1} \omega_i \Delta x_i = 0,$$

where
$$\omega_i = M_i - m_i$$
, $M_i = \sup_{x \in [x_i, x_{i+1}]} f(x)$, $m_i = \inf_{x \in [x_i, x_{i+1}]} f(x)$.

Theorem

 $C[a,b] \subset \mathcal{R}[a,b].$

If $f:[a,b] \to \mathbb{R}$ is a bounded function, then it is integrable if and only if

$$\lim_{\lambda \to 0} \sum_{i=0}^{n-1} \omega_i \Delta x_i = 0,$$

where
$$\omega_i = M_i - m_i$$
, $M_i = \sup_{x \in [x_i, x_{i+1}]} f(x)$, $m_i = \inf_{x \in [x_i, x_{i+1}]} f(x)$.

Theorem

 $C\left[a,b\right] \subset\mathcal{R}\left[a,b\right] .$

Theorem

If $f \in C(a, b)$ and f is bounded in [a, b], then $f \in \mathcal{R}[a, b]$.

V. Mikayelyan

э

イロト イヨト イヨト イヨト