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Ensemble of Neural Networks

Note that

(y − ŷ)2 =

(
n∑

i=1

wiyi − ŷ

)2

=

(
n∑

i=1

wi (yi − ŷ)

)2

≤
n∑

i=1

w2
i

n∑
i=1

(yi − ŷ)2 .

Let w1 = . . . = wn =
1
n
, then

(y − ŷ)2 ≤ 1
n

n∑
i=1

(yi − ŷ)2

Can we do ensemble learning with infinite number of neural networks?
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)2

=

(
n∑

i=1

wi (yi − ŷ)
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Can we do ensemble learning with infinite number of neural networks?

V. Mikayelyan Deep Learning December 26, 2020 4 / 15



Ensemble of Neural Networks

Note that

(y − ŷ)2 =
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BNNs

Let D = {(xi , yi ) : i = 1, . . . , n} be our training data.

Recall MLE:

wMLE = argmax
w

p (D|w) = argmax
w

n∏
i=1

p (yi |xi ,w)

= argmax
w

n∑
i=1

log p (yi |xi ,w)

Here the weights of our model are "fixed", but the data is viewed as a
random variable. If we instead view the data as being fixed and the model
weights as being a random variable, we can train to maximize the posterior
distribution p (w |D):

wMAP = argmax
w

p (w |D) = argmax
w

p (D|w) p (w)

p (D)

= argmax
w

(log p (D|w) + log p (w)) .
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BNNs

We will construct a new distribution for q (w |θ), for approximating
p (w |D).

So we need to do the following optimization:

θ∗ = argmin
θ

KL (q (w |θ) ||p (w |D))

= argmin
θ

(
KL (q (w |θ) ||p (w))− Eq(w |θ) [log p (D|w)]

)
We will assume that prior p (w) is mixture of two Gaussians:

p (w) =
∏
j

(
αN

(
wj |0, σ2

1
)
+ (1− α)N

(
wj |0, σ2

2
))

where the first mixture component of the prior is given a larger variance
than the second: σ1 > σ2.
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Facial Recognition System

Suppose there is an organisation and it wants a facial recognition
system to allow access to the building for its employees and you are
given the task of building such a system.

The problem with this task is that the organisation might not have
more than ten images for each of the employee.
Therefore, building and training a typical convolutional neural network
will not work as it cannot learn the features required with the given
amount of data.
What to do?
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Siamese NN
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Triplet Loss Function

L = max (d (a, p)− d (a, n) +m, 0) ,

where
d is a distance function (e.g. the L2 loss),

a represents a sample of the dataset,
p represents a random positive sample,
n represents a negative sample,
m is an arbitrary margin and is used to further the separation between
the positive and negative scores,
if m = 0.2 and d (a, p) = 0.5 then d (a, n) should at least be equal to
0.7.
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