Mathematics for Machine Learning

Vazgen Mikayelyan

August 8, 2020

Math for ML

Mathematical Analysis

V. Mikayelyar	an
---------------	----

We call $x \in \mathbb{R}$ the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon > 0$, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $|x_n - x| < \varepsilon$.

We call $x \in \mathbb{R}$ the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon > 0$, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $|x_n - x| < \varepsilon$.

We will write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.

We call $x \in \mathbb{R}$ the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon > 0$, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $|x_n - x| < \varepsilon$.

We will write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.

Definition

We will say than $\{x_n\}_{n=1}^{\infty}$ tends to infinity if the following condition holds: for each real number E, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $x_n > E$.

We call $x \in \mathbb{R}$ the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon > 0$, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $|x_n - x| < \varepsilon$.

We will write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.

Definition

We will say than $\{x_n\}_{n=1}^{\infty}$ tends to infinity if the following condition holds: for each real number E, there exists a natural number n_0 such that, for every natural number $n \ge n_0$, we have $x_n > E$.

We will write
$$\lim_{n \to \infty} x_n = +\infty$$
 or $x_n \to +\infty$.

V. Mikayelyar	an
---------------	----

Properties

• If $x_n \to x$ and x > y then there exists $n_0 \in \mathbb{N}$ such that $x_n > y$ for $n \ge n_0$.

- If $x_n \to x$ and x > y then there exists $n_0 \in \mathbb{N}$ such that $x_n > y$ for $n \ge n_0$.
- Every convergent sequence has only one limit.

- If $x_n \to x$ and x > y then there exists $n_0 \in \mathbb{N}$ such that $x_n > y$ for $n \ge n_0$.
- Every convergent sequence has only one limit.
- Onvergent sequence is bounded.

- If $x_n \to x$ and x > y then there exists $n_0 \in \mathbb{N}$ such that $x_n > y$ for $n \ge n_0$.
- 2 Every convergent sequence has only one limit.
- Onvergent sequence is bounded.
- $If x_n \to x and y_n \to y then$

$$x_n + y_n \to x + y,$$

- If $x_n \to x$ and x > y then there exists $n_0 \in \mathbb{N}$ such that $x_n > y$ for $n \ge n_0$.
- 2 Every convergent sequence has only one limit.
- Onvergent sequence is bounded.

④ If
$$x_n o x$$
 and $y_n o y$ then

2
$$x_n \cdot y_n o x \cdot y_n$$

- If $x_n \to x$ and x > y then there exists $n_0 \in \mathbb{N}$ such that $x_n > y$ for $n \ge n_0$.
- 2 Every convergent sequence has only one limit.
- Onvergent sequence is bounded.

• If
$$x_n \to x$$
 and $y_n \to y$ then
• $x_n + y_n \to x + y$,

$$\begin{array}{l} \textcircled{0} \quad \begin{array}{l} x_n \cdot y_n \xrightarrow{\rightarrow} x \cdot y, \\ \textcircled{0} \quad \begin{array}{l} \frac{x_n}{y_n} \rightarrow \frac{x}{y}, \end{array} \text{ if } y_n \neq 0 \text{ and } y \neq 0. \end{array}$$

- If $x_n \to x$ and x > y then there exists $n_0 \in \mathbb{N}$ such that $x_n > y$ for $n \ge n_0$.
- every convergent sequence has only one limit.
- Onvergent sequence is bounded.

• If
$$x_n \to x$$
 and $y_n \to y$ then

•
$$x_n + y_n \rightarrow x + y$$
,
• $x_n \cdot y_n \rightarrow x \cdot y$,
• $\frac{x_n}{y_n} \rightarrow \frac{x}{y}$, if $y_n \neq 0$ and $y \neq 0$
• If $x_n < y_n$ then $x < y_n$.

- If $x_n \to x$ and x > y then there exists $n_0 \in \mathbb{N}$ such that $x_n > y$ for $n \ge n_0$.
- Every convergent sequence has only one limit.
- Onvergent sequence is bounded.

(a) If
$$x_n \to x$$
 and $y_n \to y$ then

$$\begin{array}{l} \bullet \quad x_n + y_n \to x + y, \\ \bullet \quad x_n \cdot y_n \to x \cdot y, \\ \bullet \quad \frac{x_n}{y_n} \to \frac{x}{y}, \text{ if } y_n \neq 0 \text{ and } y \neq 0. \end{array}$$

$$If x_n \leq y_n \text{ then } x \leq y.$$

o If
$$x_n, y_n \to x$$
 and $x_n \leq z_n \leq y_n$, then $z_n \to x$.

V. Mikayelyar	an
---------------	----

Definition

The sequence x_n is called increasing (decreasing) if

$$x_{n+1} \ge x_n \ (x_{n+1} \le x_n)$$

for all $n \in \mathbb{N}$.

Definition

The sequence x_n is called increasing (decreasing) if

$$x_{n+1} \ge x_n \ (x_{n+1} \le x_n)$$

for all $n \in \mathbb{N}$.

Theorem

If a sequence of real numbers is increasing and bounded above then it converges and if it is not bounded above, than its limit is $+\infty$.

Definition

The sequence x_n is called increasing (decreasing) if

$$x_{n+1} \ge x_n \ (x_{n+1} \le x_n)$$

for all $n \in \mathbb{N}$.

Theorem

If a sequence of real numbers is increasing and bounded above then it converges and if it is not bounded above, than its limit is $+\infty$.

Theorem

If a sequence of real numbers is decreasing and bounded below then it converges and if it is not bounded below, than its limit is $-\infty$.

Proposition

The sequence
$$x_n = \left(1 + \frac{1}{n}\right)^n$$
 is increasing and bounded.

Theorem

If $x_n \to x$, then $\frac{x_1 + x_2 + \ldots + x_n}{n} \to x.$

Image: Image:

▶ ∢ ⊒

Theorem

If $x_n \to x$, then

$$\frac{x_1 + x_2 + \ldots + x_n}{n} \to x.$$

Theorem

Let x_n and y_n are increasing and decreasing sequences respectively. Also let $x_n < y_n$ for all $n \in \mathbb{N}$ and $(x_n - y_n) \to 0$. Then the sequences x_n and y_n are convergent and they have the same limit.

Let x_n be an arbitrary sequence and n_k is a strictly increasing sequence of natural numbers. Then the sequence $y_k = x_{n_k}$ is called a subsequence of x_n .

Let x_n be an arbitrary sequence and n_k is a strictly increasing sequence of natural numbers. Then the sequence $y_k = x_{n_k}$ is called a subsequence of x_n .

Proposition

If $x_n \to x$, then $x_{n_k} \to x$ where n_k is an arbitrary strictly increasing sequence of natural numbers.

Let x_n be an arbitrary sequence and n_k is a strictly increasing sequence of natural numbers. Then the sequence $y_k = x_{n_k}$ is called a subsequence of x_n .

Proposition

If $x_n \to x$, then $x_{n_k} \to x$ where n_k is an arbitrary strictly increasing sequence of natural numbers.

Definition

c is called a subsequential limit of the sequence x_n if there exists a subsequence x_{n_k} such that $x_{n_k} \to c$.

Let x_n be an arbitrary sequence. The greatest (smallest) subsequential limit of x_n is called upper (lower) limit of x_n .

Let x_n be an arbitrary sequence. The greatest (smallest) subsequential limit of x_n is called upper (lower) limit of x_n .

Theorem

Every sequence has upper and lower limits.

Let x_n be an arbitrary sequence. The greatest (smallest) subsequential limit of x_n is called upper (lower) limit of x_n .

Theorem

Every sequence has upper and lower limits.

Theorem

Every sequence has a monotone subsequence.

Let x_n be an arbitrary sequence. The greatest (smallest) subsequential limit of x_n is called upper (lower) limit of x_n .

Theorem

Every sequence has upper and lower limits.

Theorem

Every sequence has a monotone subsequence.

Theorem

Every bounded sequence has a convergent subsequence.

The sequence x_n is called Cauchy sequence if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $|x_n - x_m| < \varepsilon$ for all $n, m \ge n_0$.

The sequence x_n is called Cauchy sequence if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $|x_n - x_m| < \varepsilon$ for all $n, m \ge n_0$.

Theorem

The sequence x_n is a Cauchy sequence if and only if it is convergent.