Mathematics for Machine Learning

Vazgen Mikayelyan

August 8, 2020
FAST

Mathematical Analysis

Limit of a Sequence

Limit of a Sequence

Definition

We call $x \in \mathbb{R}$ the limit of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon>0$, there exists a natural number n_{0} such that, for every natural number $n \geq n_{0}$, we have $\left|x_{n}-x\right|<\varepsilon$.

Limit of a Sequence

Definition

We call $x \in \mathbb{R}$ the limit of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon>0$, there exists a natural number n_{0} such that, for every natural number $n \geq n_{0}$, we have $\left|x_{n}-x\right|<\varepsilon$.

We will write $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$.

Limit of a Sequence

Definition

We call $x \in \mathbb{R}$ the limit of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon>0$, there exists a natural number n_{0} such that, for every natural number $n \geq n_{0}$, we have $\left|x_{n}-x\right|<\varepsilon$.

We will write $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$.

Definition

We will say than $\left\{x_{n}\right\}_{n=1}^{\infty}$ tends to infinity if the following condition holds: for each real number E, there exists a natural number n_{0} such that, for every natural number $n \geq n_{0}$, we have $x_{n}>E$.

Limit of a Sequence

Definition

We call $x \in \mathbb{R}$ the limit of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ if the following condition holds: for each real number $\varepsilon>0$, there exists a natural number n_{0} such that, for every natural number $n \geq n_{0}$, we have $\left|x_{n}-x\right|<\varepsilon$.

We will write $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$.

Definition

We will say than $\left\{x_{n}\right\}_{n=1}^{\infty}$ tends to infinity if the following condition holds: for each real number E, there exists a natural number n_{0} such that, for every natural number $n \geq n_{0}$, we have $x_{n}>E$.

We will write $\lim _{n \rightarrow \infty} x_{n}=+\infty$ or $x_{n} \rightarrow+\infty$.

Limit of a Sequence

Limit of a Sequence

Properties

(1) If $x_{n} \rightarrow x$ and $x>y$ then there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>y$ for
$n \geq n_{0}$.

Limit of a Sequence

Properties

(1) If $x_{n} \rightarrow x$ and $x>y$ then there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>y$ for
$n \geq n_{0}$.
(2) Every convergent sequence has only one limit.

Limit of a Sequence

Properties

(1) If $x_{n} \rightarrow x$ and $x>y$ then there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>y$ for
$n \geq n_{0}$.
(2) Every convergent sequence has only one limit.
(3) Convergent sequence is bounded.

Limit of a Sequence

Properties

(1) If $x_{n} \rightarrow x$ and $x>y$ then there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>y$ for $n \geq n_{0}$.
(2) Every convergent sequence has only one limit.
(3) Convergent sequence is bounded.
(9) If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then
($x_{n}+y_{n} \rightarrow x+y$,

Limit of a Sequence

Properties

(1) If $x_{n} \rightarrow x$ and $x>y$ then there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>y$ for $n \geq n_{0}$.
(2) Every convergent sequence has only one limit.
(3) Convergent sequence is bounded.
(9) If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then
(1) $x_{n}+y_{n} \rightarrow x+y$,
(2) $x_{n} \cdot y_{n} \rightarrow x \cdot y$,

Limit of a Sequence

Properties

(1) If $x_{n} \rightarrow x$ and $x>y$ then there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>y$ for $n \geq n_{0}$.
(2) Every convergent sequence has only one limit.
(3) Convergent sequence is bounded.
(9) If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then
(1) $x_{n}+y_{n} \rightarrow x+y$,
(2) $x_{n} \cdot y_{n} \rightarrow x \cdot y$,
(3) $\frac{x_{n}}{y_{n}} \rightarrow \frac{x}{y}$, if $y_{n} \neq 0$ and $y \neq 0$.

Limit of a Sequence

Properties

(1) If $x_{n} \rightarrow x$ and $x>y$ then there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>y$ for $n \geq n_{0}$.
(2) Every convergent sequence has only one limit.
(3) Convergent sequence is bounded.
(9) If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then
(1) $x_{n}+y_{n} \rightarrow x+y$,
(2) $x_{n} \cdot y_{n} \rightarrow x \cdot y$,
(3) $\frac{x_{n}}{y_{n}} \rightarrow \frac{x}{y}$, if $y_{n} \neq 0$ and $y \neq 0$.
(1) If $x_{n} \leq y_{n}$ then $x \leq y$.

Limit of a Sequence

Properties

(1) If $x_{n} \rightarrow x$ and $x>y$ then there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>y$ for $n \geq n_{0}$.
(2) Every convergent sequence has only one limit.
(3) Convergent sequence is bounded.
(9) If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then
(1) $x_{n}+y_{n} \rightarrow x+y$,
(2) $x_{n} \cdot y_{n} \rightarrow x \cdot y$,
(3) $\frac{x_{n}}{y_{n}} \rightarrow \frac{x}{y}$, if $y_{n} \neq 0$ and $y \neq 0$.
(1) If $x_{n} \leq y_{n}$ then $x \leq y$.
(5) If $x_{n}, y_{n} \rightarrow x$ and $x_{n} \leq z_{n} \leq y_{n}$, then $z_{n} \rightarrow x$.

Limit of a Sequence

Limit of a Sequence

Definition

The sequence x_{n} is called increasing (decreasing) if

$$
x_{n+1} \geq x_{n}\left(x_{n+1} \leq x_{n}\right)
$$

for all $n \in \mathbb{N}$.

Limit of a Sequence

Definition

The sequence x_{n} is called increasing (decreasing) if

$$
x_{n+1} \geq x_{n}\left(x_{n+1} \leq x_{n}\right)
$$

for all $n \in \mathbb{N}$.

Theorem

If a sequence of real numbers is increasing and bounded above then it converges and if it is not bounded above, than its limit is $+\infty$.

Limit of a Sequence

Definition

The sequence x_{n} is called increasing (decreasing) if

$$
x_{n+1} \geq x_{n}\left(x_{n+1} \leq x_{n}\right)
$$

for all $n \in \mathbb{N}$.

Theorem

If a sequence of real numbers is increasing and bounded above then it converges and if it is not bounded above, than its limit is $+\infty$.

Theorem

If a sequence of real numbers is decreasing and bounded below then it converges and if it is not bounded below, than its limit is $-\infty$.

Limit of a Sequence

Proposition

The sequence $x_{n}=\left(1+\frac{1}{n}\right)^{n}$ is increasing and bounded.

Limit of a Sequence

Theorem

If $x_{n} \rightarrow x$, then

$$
\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \rightarrow x
$$

Limit of a Sequence

Theorem

If $x_{n} \rightarrow x$, then

$$
\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \rightarrow x .
$$

Theorem

Let x_{n} and y_{n} are increasing and decreasing sequences respectively. Also let $x_{n}<y_{n}$ for all $n \in \mathbb{N}$ and $\left(x_{n}-y_{n}\right) \rightarrow 0$. Then the sequences x_{n} and y_{n} are convergent and they have the same limit.

Limit of a Sequence

Definition

Let x_{n} be an arbitrary sequence and n_{k} is a strictly increasing sequence of natural numbers. Then the sequence $y_{k}=x_{n_{k}}$ is called a subsequence of x_{n}.

Limit of a Sequence

Definition

Let x_{n} be an arbitrary sequence and n_{k} is a strictly increasing sequence of natural numbers. Then the sequence $y_{k}=x_{n_{k}}$ is called a subsequence of x_{n}.

Proposition

If $x_{n} \rightarrow x$, then $x_{n_{k}} \rightarrow x$ where n_{k} is an arbitrary strictly increasing sequence of natural numbers.

Limit of a Sequence

Definition

Let x_{n} be an arbitrary sequence and n_{k} is a strictly increasing sequence of natural numbers. Then the sequence $y_{k}=x_{n_{k}}$ is called a subsequence of x_{n}.

Proposition

If $x_{n} \rightarrow x$, then $x_{n_{k}} \rightarrow x$ where n_{k} is an arbitrary strictly increasing sequence of natural numbers.

Definition

c is called a subsequential limit of the sequence x_{n} if there exists a subsequence $x_{n_{k}}$ such that $x_{n_{k}} \rightarrow c$.

Limit of a Sequence

Definition

Let x_{n} be an arbitrary sequence. The greatest (smallest) subsequential limit of x_{n} is called upper (lower) limit of x_{n}.

Limit of a Sequence

Definition

Let x_{n} be an arbitrary sequence. The greatest (smallest) subsequential limit of x_{n} is called upper (lower) limit of x_{n}.

Theorem

Every sequence has upper and lower limits.

Limit of a Sequence

Definition

Let x_{n} be an arbitrary sequence. The greatest (smallest) subsequential limit of x_{n} is called upper (lower) limit of x_{n}.

Theorem

Every sequence has upper and lower limits.

Theorem

Every sequence has a monotone subsequence.

Limit of a Sequence

Definition

Let x_{n} be an arbitrary sequence. The greatest (smallest) subsequential limit of x_{n} is called upper (lower) limit of x_{n}.

Theorem

Every sequence has upper and lower limits.

Theorem

Every sequence has a monotone subsequence.

Theorem

Every bounded sequence has a convergent subsequence.

Limit of a Sequence

Definition

The sequence x_{n} is called Cauchy sequence if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\varepsilon$ for all $n, m \geq n_{0}$.

Limit of a Sequence

Definition

The sequence x_{n} is called Cauchy sequence if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\varepsilon$ for all $n, m \geq n_{0}$.

Theorem

The sequence x_{n} is a Cauchy sequence if and only if it is convergent.

