Machine Learning

Unsupervised Learning

FAS I DISCOVERING
THE FUTURE



Topics of previous lectures

N N N N N N NN

Ingredients of Machine Learning

Classification Basics, Basic Linear Classifier

K-Nearest Neighbours and Naive Bayes Classifier

Linear and Quadratic Discriminant Analysis

Support Vector Machines (SVM)

Decision Trees

Ensemble Methods (Bagging, Weighted Voting, Stacking)
Regression Methods

Evaluation and Scoring of Classifiers

Ensemble Methods (Boosting)

Clustering (Hierarchical, K-Means, K-Medoids, DBSCAN)
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Topics of today's lecture

@ Dimensionality Reduction
@ Principal Component Analysis (PCA)
o t-Distributed Stochastic Neighbor Embedding (t-SNE)
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Motivation for Dimensionality Reduction

o Working directly with high-dimensional data, such as images, comes with
some difficulties
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Motivation for Dimensionality Re

o Working directly with high-dimensional data, such as images, comes with
some difficulties

@ High-dimensional data is often overcomplete, i.e., many dimensions are
redundant and can be explained by a combination of other dimensions.

@ Dimensions in high-dimensional data are often correlated so that the data
possesses an intrinsic lower-dimensional structure.

@ Dimensionality reduction exploits structure and correlation and allows us to
work with a more compact representation of the data, ideally without losing
much information.

@ It can also be useful to detect potential patterns in high dimensial data, by
visualizing the first 2-3 projections.
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Principal Component Analysis

What is the problem with high-dimensional
things?
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What is the problem with high-dimensional
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Algorithms tend

Hard to visualise 10 get slow
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Principal Component Analysis

What is the problem with high-dimensional
things?

Algorithms tend

Hard to visualise 10 get slow

Methods trained on high-dimensional data
suffer from the curse of dimensionality
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What is the curse of dimensionality? F} :
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Principal Component Analysis

What is the curse of dimensionality? f :
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Principal Component Analysis

What is the curse of dimensionality? M

I,
£
Fasefﬁue

Blue (75%)

4 points False True
CE—E-E-m A EERE—ani—E—
1 ) 3 4 5 X Blue (50%) Red (75%)

6 points 4 points

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

What is the curse of dimensionality? M
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Principal Component Analysis

What is the curse of dimensionality? M
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Principal Component Analysis

What is the curse of dimensionality? M :
M
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Principal Component Analysis

What is the curse of dimensionality? M _
i
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Principal Component Analysis

What is the curse of dimensionality? S -

Highly unbalanced
regions
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Principal Component Analysis

What is the curse of dimensionality? ﬁj_ :

y 2 4
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Principal Component Analysis

y 2 4
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On average 55.5% of cells will be
either empty or singletons
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Principal Component Analysis

What is the curse of dimensionality?
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Principal Component Analysis

What is the curse of dimensionality?

In order to keep high-dimensional space reasonably
covered you need a lot more data

y 2 4
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On average 55.5% of cells will be On average 92.5% of cells will be
either empty or singletons either empty or singletons
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Principal Component Analysis

What is the curse of dimensionality? I?" _
(part ) o
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Principal Component Analysis

What is the curse of dimensionality? J
(part )

Distances become similar in high-dimensional space

Ala]lali]e

FAST Foundation Dimensionality Reduction 25 Dec 2020 6/14



Principal Component Analysis

What is the problem with high-dimensional
things?

Algorithms tend

Hard to visualise 10 get slow

Methods trained on high-dimensional data
suffer from the curse of dimensionality

FAST Foundation Dimensionality Reduction



Principal Component Analysis

What is the problem with high-dimensional
things?

Algorithms tend

Hard to visualise 10 get slow

\

gd more data and objects become

closer in high-dimensional space
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Principal Component Analysis

Feature extraction vs feature elimination
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Principal Component Analysis

feature elimination

Keeping only few
original features
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Principal Component Analysis

feature elimination

-

Remove Keeping only few
all the rest original features
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Principal Component Analysis

Feature extraction
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Principal Component Analysis

Feature extraction

Circumference
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Principal Component Analysis

Feature extraction

Circumference

o
&
<

Diameter
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Principal Component Analysis

Principle Component Analysis

s,
f%%

Principle Component #2 (PC2)

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

Principle Component Analysis
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Principle Component #2 (PC2)
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Principal Component Analysis

1-Dimensional data

o = w M3 - >
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Principal Component Analysis

2-Dimensional data

y
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Principal Component Analysis

3-Dimensional data

X y z
1 2 2
2 4 0.5
3 5 1
4 f 1
5 ] 0.5
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Principal Component Analysis

200-Dimensional data?
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Principal Component Analysis

200-Dimensional data?

Are all of these dimensions equally useful?
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Principal Component Analysis

2-D example revisited
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Principal Component Analysis

2-D example revisited
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Principal Component Analysis

2-D example revisited

Main variation is from left to right
5 We can keep only one dimension

Not so much from top to bottom

1 2 3 4 5 X
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Principal Component Analysis

2-D example revisited

Main variation is from left to right
We can keep only one dimension
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Projected data does not seem
Not so much from top to bottom to loose much information
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Principal Component Analysis

2-D example revisited
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Principal Component Analysis

2-D example revisited

Data seem to be spread more equally
along X and y axes

y 5
5
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Principal Component Analysis

2-D example revisited
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Principal Component Analysis

2-D example revisited
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Principal Component Analysis
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this line
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Principal Component Analysis

2-D example revisited

How about we make new axes from these lines?

Data is mostly spread along this
G line

And a little bit along
this line
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Principal Component Analysis

2-D example revisited

How about we make new axes from these lines?

4

Data is mostly spread along this
G line

And a little bit along
this line
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Principal Component Analysis

2-D example revisited

How about we make new axes from these lines?

4

Data is mostly spread along this
G line
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Principal Component Analysis

2-D example revisited

These new axes are called principle components
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Principal Component Analysis

2-D example revisited

These new axes are called principle components

PC
4 < >

A

5 PC #1 is a new vector which
spans along most of the variation in data
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Principal Component Analysis

2-D example revisited

These new axes are called principle components

-
5
\
4

=
PC 2
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X
PC #2 is another new vector which spans along
the direction of the second most variation
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Principal Component Analysis

Principle components are not additional
axes/dimensions

PC#
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Principal Component Analysis

Principle components are not additional
axes/dimensions

PC#

They are old
dimensions
rearranged
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Principal Component Analysis
Principle components are not additional

axes/dimensions

PC#

They are old
dimensions
rearranged

X
Such that the first axis now spans along most

25 Dec 2020
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Principal Component Analysis

Principle components are not additional
axes/dimensions

How many PCs will be
in 3D space?
z
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Principal Component Analysis
Principle components are not additional

axes/dimensions
y -
How many PCs will be :

in 3D space? n
z + >

&

A As many as there were

original dimensions,

hence 3 PCs
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Principal Component Analysis

Principle components are not additional
axes/dimensions

How many PCs will be
formed in 200D space?
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Principal Component Analysis

Principle components are not additional
axes/dimensions

How many PCs will be

No exceptions, 200 PCs
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Principal Component Analysis

Principle components are not additional
axes/dimensions

How many PCs will be

No exceptions, 200 PCs
But what is the benefit of
having PCs?
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Principal Component Analysis
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Data is mostly spread along this
G line
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Principal Component Analysis

y
Data is mostly spread along this
G line
5
s ——— —
1 2 3 4 5
3
; And a Iit_tle_bit along From 2D to 1D without
this line loosing much information
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Principal Component Analysis

Principle components are not additional

axes/dimensions
How many PCs will be &% . e
formed in 200D space? e @ .
PR
- ® @
® ob

No exceptions, 200 PCs

But what is the benefit of
having PCs?
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Principal Component Analysis

Principle components are not additional

axes/dimensions
How many PCs will be &% . e
formed in 200D space? e @ .
PR
- ® @
® ob

First few PCs would be
enough to capture
important information
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Principal Component Analysis
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Principal Component Analysis
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Principal Component Analysis
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Principal Component Analysis
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Principal Component Analysis

Transpose the matrix of coordinates

Z
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Principal Component Analysis

Transpose the matrix of coordinates

V4
=2 2
1 0
NE What are the dimensions
- of the transposed matrix?
2
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Principal Component Analysis

Transpose the matrix of coordinates
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Transpose the matrix of coordinates

Z
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Principal Component Analysis

Z'xZ=3S5
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Principal Component Analysis

Z
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Principal Component Analysis
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Principal Component Analysis
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Principal Component Analysis

How to interpret values in covariance matrix?

y
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2 ® Covariance matrix
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Principal Component Analysis

How to interpret values in covariance matrix?

S
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Principal Component Analysis

How to interpret values in covariance matrix?

[-2,-1,0,1, 2]
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S

1 ®

. P 25|15
4 b 15|15

2 @ Covariance matrix
3 i :

z -1 0

Collect all projected
onta X axis values
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Principal Component Analysis

How to interpret values in covariance matrix?

[2; <1,0, 1, 2] mean([-2,-1,0,1,2]) = ?
y
2
1 @ ‘5
0 W 25|15
2 15|15
’ @ Covariance matrix

Collect all projected
onta X axis values
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Principal Component Analysis

How to interpret values in covariance matrix?

[-2,-1,0,1, 2] mean([-2,-1,0,1,2]) =0
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. & 25|15

5 15| 1.5

2 @ Covariance matrix
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Collect all projected
onta X axis values
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Principal Component Analysis

How to interpret values in covariance matrix?

[-2,-1,0,1,2] x=0
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2 @ Covariance matrix
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Collect all projected
onta X axis values
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Principal Component Analysis

How to interpret values in covariance matrix?

=2
— X:— X
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Principal Component Analysis

2 (X x)°

Variance — o =
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2 (X x)°

Variance — o =
n—1

number of J
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Principal Component Analysis

mean of all
points
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Principal Component Analysis

mean of all
points
. Z (xr' - 0)2 i - O
Variance — o6 =——
4
number of
@ ' points

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis
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Principal Component Analysis
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Principal Component Analysis

value of = mean of all
['2: '1: 015 2] each point _/’W x=0 points
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Principal Component Analysis

value of = mean of all
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Principal Component Analysis
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Principal Component Analysis

value of = mean of all
[_2! it 2] each point x=0 points
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Principal Component Analysis

value of = mean of all
[_2! it 2] each point x=0 points

Variance — 06 = 2.5
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® ® oS Variance is an expected value

& ® of the squared deviation from
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Principal Component Analysis

How to interpret values in covariance matrix?
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Principal Component Analysis

How to interpret values in covariance matrix?

[2,-1,0,1,2] X=0 o=25

y Variance along
2 first axis
s
1 @ [ ] v
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. ® Covariance matrix
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Principal Component Analysis

How to interpret values in covariance matrix?

y Variance along
2 first axis
s
1 L w Y
2.5
0 ® »
-1
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® Covariance matrix
3
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Principal Component Analysis

How to interpret values in covariance matrix?

y Variance along

2 first axis
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= ® Covariance matrix
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Principal Component Analysis

How to interpret values in covariance matrix?

y Variance along
2 first axis
S
N ) w ® v
0e - @® =8

Variance along
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Covariance matrix
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Principal Component Analysis

How to interpret values in covariance matrix?
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each point
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points o= Z ;=¥
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Covariance matrix
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Principal Component Analysis

How to interpret values in covariance matrix?

value of number of mean of all 2
each point paints points 6= Z (y: y )
[:2,0,8, 1, 1] 5 §=0 n—1
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G Covariance matrix
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Principal Component Analysis

How to interpret values in covariance matrix?

value of number of mean of all
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Principal Component Analysis

How to interpret values in covariance matrix?

y Variance along
2 first axis
s
1% ....Q.... .% v
U &l @ 25

Variance along

A 15 \s/econd axis

Covariance matrix
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Principal Component Analysis

How to interpret values in covariance matrix?

y
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2 ® Covariance matrix
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Principal Component Analysis

How to interpret values in covariance matrix?

y
Covariances
2
S
1 @ ® Aw
1.5
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-1 + 1.5
% ® Covariance matrix
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Principal Component Analysis

How to interpret values in covariance matrix?

¥
Covariances
2
S
1 L ®
1.5

0 & ®

-1 + 1.5

% ® Covariance matrix

3

2 1 0 1 2

X

Covariance indicates how two variables are related. A positive covariance means
the variables are positively related, while a negative covariance means the
variables are inversely related.
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How to interpret values in covariance matrix?
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Principal Component Analysis

How to interpret values in covariance matrix?

[-2,-1,0,1,2] [-2,0,0,1,1] (x,-—)?)(yv—ﬁ)
x=0 y=0 coviz ) = 2 —

) n-—1
Yy
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-1 + 1.5

. ® Covariance matrix
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How to interpret values in covariance matrix?
[-2.-1,0,1,2] [-2,0.0,1,1]

6
X=0 y=0 cov(x,y) = 1

y
Covariances
2
S
1 @ ® Aw
1.5
0 @ @
-1 + 1.5
% ® Covariance matrix
3
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Principal Component Analysis

How to interpret values in covariance matrix?
[-2.-1,0,1,2] [-2,0.0,1,1]

X=0 §=0 cov(x,y) = 1.5

y
Covariances
2
s

. . ° 15
-1 + 1.5
2 ® Covariance matrix
3
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How to interpret values in covariance matrix?
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2 ® Covariance matrix
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How to interpret values in covariance matrix?

-2,-1,0,1,2 0,0,1-2.1 T =
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How to interpret values in covariance matrix?

[-2.-1,0,1,2] [0,0,1,-2,1] (x‘- o )?)(y i ‘T")
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How to interpret values in covariance matrix?
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How to interpret values in covariance matrix?

[-2.-1,0.1.2] [0.0,1-21] (=2)(0) + (= 1)(0) + (O)(1) + (1)(=2) + (2)1)
cov(x.y) =
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How to interpret values in covariance matrix?

[2,-1,0,1,2] [0,0,1,2 1] 0
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x=0 y=0
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Principal Component Analysis

How to interpret values in covariance matrix?

[2,-1,0,1,2] [0,0,1,2 1] 0
5 covix,y) = 1 =0

x=0 y=0
y
2
1 - ®
0 ® @
=1 0
% ® Covariance matrix
3
2 1 0 1 2
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Principal Component Analysis

How to interpret values in covariance matrix?
[2.-1,0,1,2] [0,0,1,-2 1]

0
X=0 v =0 C(}V(x,y} = Z =0

0

Covariance matrix

.2 -1 a 1 2 X

Covariance 0 means that there is no relationship between two variables.
Knowing something about the value of one does not say anything about the value
of the ather.
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How to interpret values in covariance matrix?
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Principal Component Analysis

How to interpret values in covariance matrix?
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S PDPT
25115 25|15
15158 1.5 |18

For an example: hitps:/fwww.scss.ted. ie/Rozenn Dahyat/C5 1BA 1/SolutionEigen pdf
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S PD PT
25115 -2.9 | 0.24 -0.81/-0.58
15115 -2 -0.33| 0.58 |-0.81

For an example: hitps:/fwww.scss.ted. ie/Rozenn Dahyat/C5 1BA 1/SolutionEigen pdf
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FAST Foundation

25

1.5

P D PT
-0.81 0,58‘ 3.58 -0.81/-0.58
= X
-0.58 -0,81‘ 0.41 0.58 | -0.81

For an example: hitps:/fwww.scss.ted. ie/Rozenn Dahyat/C5 1BA 1/SolutionEigen pdf
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Eigendecomposition

S P D PT
25 (15 -0.81 0,58‘ 3.58 -0.81/-0.58
— b4 >
1.5 1.6 -0.58 -0,81‘ 0.41 0.58 |-0.81

For an example: hitps:/fwww.scss.ted. ie/Rozenn Dahyat/C5 1BA 1/SolutionEigen pdf
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Eigendecomposition

Eigenvectors

N

S P D PT
25 (15 -0.81 0,58‘ 3.58 -0.81/-0.58
— b4 >
1.5 1.6 -0.58 -0,81‘ 0.41 0.58 |-0.81

/

Eigenvalues

For an example: hitps:/fwww.scss.ted. ie/Rozenn Dahyat/C5 1BA 1/SolutionEigen pdf
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Eigenvectors
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Eigenvectors
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Eigenvectors
-0.81| 0.58
-0.58|-0.81
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Eigenvectors

-0.81) 0.58
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FAST Foundation

Dimensionality Reduction

25 Dec 2020



Principal Component Analysis

Eigenvectors
-0.81| 0.58
-0.58 |-0.81
y
2
| h
0,0
" ( .:)
-0.81 /\
A
-2
a w'
in
=
2 1 0 1 2
X

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

Eigenvectors
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Eigenvectors
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Eigenvectors
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Eigenvectors

-0.81

0.58

-0.58

-0.81

transpose

Eigenvectors™

-0.81|-0.58

0.58 |-0.81

-2

0ld coordinate system

FAST Foundation

¥
’
-3
:
1
a
-1
-2
-3
2 X -2 -1 4]

New coordinate systam

Dimensionality Reduction

5 Dec 2020



Principal Component Analysis

Eigenvectors™
-0.81-0.58
0.58 |-0.81

8
2 p
o
]
1
]
sigermveciy A1
-1
-2
3
-2 -1 4] 1 2 X -2 -1 0 1 2
0ld coordinate system New coordinate systam

FAST Foundation Dimensionality Reduction 5 Dec 2020



Principal Component Analysis

Eigenvectors’ Al
-0.81|-0.58 2|10 2
0.58 |-0.81 ol RS I

8
’
o
]
1
]
sigermveciy A1
-1
-2
3
2 -1 4] 1 2 X -2 -1 0 1 2
0ld coordinate system New coordinate systam

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

Eigenvectors’ Al
-0.81|-0.58 2|10 2
x "
0.58 |-0.81 ol RSN

8
’
o
]
1
]
sigermveciy A1
-1
-2
3
2 -1 4] 1 2 X -2 -1 0 1 2
0ld coordinate system New coordinate systam

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

Eigenvectors’

-0.81

-0.58

0.58

-0.81

0ld coordinate system

FAST Foundation

ZT
-2 -1 0 2
2 ) 1
¥
2 p
&
i
1
]
[rme—
A
-2
3
2 X -2 -1 0

New coordinate systam

Dimensionality Reduction

25 Dec 2020



Principal Component Analysis
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Do you still remember what was it all about?

Y 4

o™

[5]
2 2 L)
1 & 1

® ®
0 ® o ¢ ol @
PC1 @&
1 R »
2 - i
3 a
2 =1 0 1 2 % 2 1 0 1 2

0ld coordinate system New coordinate systam

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

Do you still remember what was it all about?
We want to reduce the dimensionality!
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Do you still remember what was it all about?
We want to reduce the dimensionality!
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Principal Component Analysis

We can ignore the second eigenvector
because it does not contain much information

>
2 2
1 & 1
4 ® o o O eae—
PC1
1 1
2 - i
3 3
-2 -1 4] 1 2 X 2 1 0 1 2
0ld coordinate system New coordinate systam

FAST Foundation Dimensionality Reduction




Principal Component Analysis

the second eigenvector
does not contain much information

How much information the second eigenvector
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S D
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Covariance matrix MNew covariance matrix
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Principal Component Analysis

S D
28 | 1.5 358 0
15|15 0 |0.42
Covariance matrix MNew covariance matrix

Both old and new axes explain 4 units of
variance

25+15=4 358+042=4

0ld coordinate system New coordinate systam
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Principal Component Analysis

S D
28 | 1.5 358 0
15|15 0 |0.42
Covariance matrix MNew covariance matrix

Both old and new axes explain 4 units of
variance

25+15=4 358+042=4

Out of these 4, X axis explains:
2.5/4=62.5%
And Y axis explains:
1.5/4=37.5%

0ld coordinate system New coordinate systam
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Principal Component Analysis

S D
28 | 1.5 358 0
15|15 0 |0.42
Covariance matrix MNew covariance matrix

Both old and new axes explain 4 units of

variance
25+15=4 358+042=4
Out of these 4, X axis explains: Out of these 4, PC1 axis explains:
2.5/4=62.5% 3.58/4=89.5%
And Y axis explains: And PC2 axis explains:
1.5/4=37.5% 0.42/4=10.5%
0ld coordinate system New coordinate systam

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

the second PC
does not contain much information

How much information the second PC contains?
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We can ignore the second PC because it
explains only 10.5% of variation
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Principal Component Analysis

How many PCs will be
formed in 200D space?
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Principal Component Analysis

How many PCs will be
formed in 200D space?

No exceptions, 200 PCs

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

How many PCs should we keep?
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Principal Component Analysis

Variance explained is a good criteria for
choosing the total number of PCs to keep

How many PCs should we keep?
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Principal Component Analysis

Variance explained is a good criteria for
choosing the total number of PCs to keep

r 3

You should keep as many
PCs as it takes to explain
90% of total variance

r 3

How many PCs should we keep?
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Principal Component Analysis

Variance explained is a good criteria for
choosing the total number of PCs to keep

You should keep as many

PCs as it takes to explain <

4

N

b

90% of total variance

—x

How many PCs should we keep?

FAST Foundation
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Principal Component Analysis

Principle Component
Analysis (PCA)

v

v

Can be used as part of supervised learning pipeline
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Supervised Learning pipeline

° Acquire Data =--» e Preprocessing

-
.

. Train/test split .

__ Find the Lt

@3@ best model «=-- D:EE.  EEEa
using GV O =

\Safe place
% Evaluate final
"'"'b o model on —
the test set

¥ Profit

FAST Foundation

Dimensionality Reduction

25 Dec 2020



Principal Component Analysis

Supervised Learning pipeline
o E i

200D raw data

FAST Foundation
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Supervised Learning pipeline

N o e Normalisation

(subtract mean)

200D raw data
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Supervised Learning pipeline

N o e Normalisation ~ _

(subtract mean) "

200D raw data “;'

Train/test split
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Supervised Learning pipeline

e o o Normalisation ~ _

(subtract mean) "

200D raw data “‘-‘

Train/test split

O M~ test
Safe place)

FAST Foundation Dimensionality Reduction 25 Dec 2020



Principal Component Analysis

Supervised Learning pipeline

e o o Normalisation ~ _

(subtract mean) "

200D raw data '
PCA  200PCs

test

Safe place)
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Principal Component Analysis

Supervised Learning pipeline

e o o Normalisation ~ _

(subtract mean) "

, 200PCs

test

Keep few PCs
(90% variance) Safe place )
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Principal Component Analysis

Supervised Learning pipeline

e o o Normalisation ~ _

(subtract mean) "

, 200PCs

Find the
best model «- @
using CV

test

Keep few PCs
(90% variance) Safe place )
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Principal Component Analysis

Supervised Learning pipeline

N o o Normalisation ~ _

L (subtract mean) "
200D raw data '
PCA |, 200PCs

Train/test split

Find the

best model «- e ED:L——-

ueing OV e o COT M - test
", ::::E;E Eﬁ:i; Safe place)

Evaluate final
"'"'b o model on —
the test set

¥ Profit
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Principal Component Analysis

Supervised Learning pipeline

Here, PCA is performed only on training data

PCA |, 200PCs
™ Train/test split

N i I
n <+ <--
. D m

¥
Keep few PCs
(80% variance)
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Principal Component Analysis

Supervised Learning pipeline

Here, PCA is performed only on training data

PCA | 200PCs
Train/test split

G o I
OO M test
Keep few PCs
(90% variance) Safe place

When we use test set, it is q
transformed using the same

eigenvectors as training data
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Principal Component Analysis

PCA has an “undo” button

You can recover the original features back!
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Principal Component Analysis

PCA has an “undo” button

Conventional PCA

: T ~
eigenvectors X Z, ... = Ziransformed

Reversed PCA

eigenvectors' X Z, Z

ransformed — “original

You can recover the original features back!

Convince yourself: hitp://'www.cs.ofago.ac.nz/cosc453/student_tutorials/principal its. pdf
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Principal Component Analysis

Principle components are linear
combinations of original features

PCA
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Principal Component Analysis

Principle components are linear
combinations of original features

PCA

So if you predict anything based on PCs, the
meaning of original features is not preserved
after the transformation
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Problem Setting of PCA

@ In PCA, we are interested in finding projections x/, of data points x,, that are
as similar to the original data points as possible, but which have a
significantly lower intrinsic dimensionality.

FAST Foundation Dimensionality Reduction 25 Dec 2020 7/14



Problem Setting of PCA

@ In PCA, we are interested in finding projections x/, of data points x,, that are
as similar to the original data points as possible, but which have a
significantly lower intrinsic dimensionality.

@ Suppose we have a dataset X = {xy,...,xy} € RV*P where
x, € RP, E(X) = 0 and the sample covariance of X is

1 1N
— T _ T
S = NX X = N n§:1xnxn
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Problem Setting of PCA

@ In PCA, we are interested in finding projections x/, of data points x,, that are
as similar to the original data points as possible, but which have a
significantly lower intrinsic dimensionality.

@ Suppose we have a dataset X = {xy,...,xy} € RV*P where
x, € RP, E(X) = 0 and the sample covariance of X is

S = —XTX = an

@ We assume there exists a low-dimensional compressed representation (code)

of x,,
z, = BTx,, € RM,

where B = [by,...,by] € RPXM js the projection matrix.

FAST Foundation Dimensionality Reduction 25 Dec 2020 7/14



Problem Setting of PCA

@ In PCA, we are interested in finding projections x/, of data points x,, that are
as similar to the original data points as possible, but which have a
significantly lower intrinsic dimensionality.

@ Suppose we have a dataset X = {xy,...,xy} € RV*P where
x, € RP, E(X) = 0 and the sample covariance of X is

S = —XTX = an

@ We assume there exists a low-dimensional compressed representation (code)
of x,,
z, = BTx,, € RM,
where B = [by,...,by] € RPXM js the projection matrix.

@ We further assume that the columns of B are orthonormal, so that binj =0
iffi #jand blb; =1

FAST Foundation Dimensionality Reduction 25 Dec 2020 7/14



Problem Setting of PCA

In PCA, we are interested in finding projections x/, of data points x,, that are
as similar to the original data points as possible, but which have a
significantly lower intrinsic dimensionality.

Suppose we have a dataset X = {x;,...,xx} € RV*P where
x, € RP, E(X) = 0 and the sample covariance of X is

1 1N
— T _ T
S = NX X = N n§:1xnxn

We assume there exists a low-dimensional compressed representation (code)
of x,,

z, = BTx,, € RM,
where B = [by,...,by] € RPXM js the projection matrix.
We further assume that the columns of B are orthonormal, so that binj =0
iffi #jand blb; =1
We seek an M-dimensional subspace U C R, dim(U) = M < D onto
which we project the data
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Problem Setting of PCA

In PCA, we are interested in finding projections x/, of data points x,, that are
as similar to the original data points as possible, but which have a
significantly lower intrinsic dimensionality.

Suppose we have a dataset X = {x;,...,xx} € RV*P where
x, € RP, E(X) = 0 and the sample covariance of X is

1 1N
— T _ T
S = NX X = N n§:1xnxn

We assume there exists a low-dimensional compressed representation (code)
of x,,

z, = BTx,, € RM,
where B = [by,...,by] € RPXM js the projection matrix.
We further assume that the columns of B are orthonormal, so that binj =0
iffi #jand blb; =1
We seek an M-dimensional subspace U C R, dim(U) = M < D onto
which we project the data
We denote the projected data as x/, € U and their coordinates by z,
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Problem Setting of PCA

@ We can describe the information contained in the data by looking at the
spread of the data and measure it with variance
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Problem Setting of PCA

@ We can describe the information contained in the data by looking at the
spread of the data and measure it with variance

@ In this setting, retaining most information after data compression is

equivalent to capturing the largest amount of variance in the low-dimensional
representation
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Problem Setting of PCA

@ We can describe the information contained in the data by looking at the
spread of the data and measure it with variance

@ In this setting, retaining most information after data compression is
equivalent to capturing the largest amount of variance in the low-dimensional
representation

@ We maximize the variance of the low-dimensional code using a sequential
approach.
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Problem Setting of PCA

@ We can describe the information contained in the data by looking at the
spread of the data and measure it with variance

@ In this setting, retaining most information after data compression is
equivalent to capturing the largest amount of variance in the low-dimensional
representation

@ We maximize the variance of the low-dimensional code using a sequential
approach.

@ We start by seeking a single vector by € R” that maximizes variance of the
projected data

1 & 1 &
Var(z) NZ: NZ 1xn =
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Problem Setting of PCA

@ We can describe the information contained in the data by looking at the
spread of the data and measure it with variance

@ In this setting, retaining most information after data compression is
equivalent to capturing the largest amount of variance in the low-dimensional
representation

@ We maximize the variance of the low-dimensional code using a sequential
approach.

@ We start by seeking a single vector by € R” that maximizes variance of the
projected data

n=1 n=1
1 & 1 &
=¥ > bix.xb = bl (5 > xnx1 )by = b Sby,
n=1 n=1

where S'is the sample covariance matrix.
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Problem Setting of PCA

@ We can describe the information contained in the data by looking at the
spread of the data and measure it with variance

@ In this setting, retaining most information after data compression is
equivalent to capturing the largest amount of variance in the low-dimensional
representation

@ We maximize the variance of the low-dimensional code using a sequential
approach.

@ We start by seeking a single vector by € R” that maximizes variance of the
projected data

n=1 n=1
1 1
=¥ > bix.xb = blT(N > xnx1 )by = b Sby,
n=1 n=1

where S'is the sample covariance matrix.

@ Note that if we would not put a unit vector contraint on by, the variance
would increase for longer-length b;.
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Mathematical Derivations

We need to solve the following constrained optimization problem
max b’ Sb;
b,

subject to ||by||* =1
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Mathematical Derivations

We need to solve the following constrained optimization problem
max bl Sb,
subject to ||by||? =1
The Lagragian will be

A(by, M) =bTSb; 4+ A\ (1 —biby)
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Mathematical Derivations

We need to solve the following constrained optimization problem
max b Sb;
b;

subject to ||by||? =1

The Lagragian will be
A(by, M) =bTSb; 4+ A\ (1 —blby)
Finding the partial derivatives w.r.t. by and A\

oA oA
IR _opTs —onbT, 2
IS )‘1 1’8)\1

1-blb
Ob, 1ot
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Mathematical Derivations

We need to solve the following constrained optimization problem
maxb? Sb;
b;

subject to ||by||? =1
The Lagragian will be
A(by, M) =bTSb; 4+ A\ (1 —biby)
Finding the partial derivatives w.r.t. by and \;

oA , OA

—— =2bfS —2\b], —— =
db, ! W

1—-blib;

Setting these partial derivatives to 0 gives us

Sby = A\1by
bl'b, =1

Does this look familiar?
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Mathematical Derivations

Sb; = A1by
blb; =1

b; is an eigenvector of the data covariance matrix S, and the Lagrange multiplier
A1 plays the role of the corresponding eigenvalue.
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Mathematical Derivations

Sby = Mby
bl'b; =1
b, is an eigenvector of the data covariance matrix S, and the Lagrange multiplier

A1 plays the role of the corresponding eigenvalue.
The objective can be re-written as

Var(z1) = b{ Sby = Aib{ by = Ay,

the variance of the data projected onto a one-dimensional subspace equals the
eigenvalue that is associated with the basis vector by that spans this subspace.
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Mathematical Derivations

Sby = A1by
blb, =1

b; is an eigenvector of the data covariance matrix S, and the Lagrange multiplier
A1 plays the role of the corresponding eigenvalue.
The objective can be re-written as

Var(z) = bl Sby = \ibl by = Ay,

the variance of the data projected onto a one-dimensional subspace equals the
eigenvalue that is associated with the basis vector by that spans this subspace.
To obtain the projection of x,, on the obtained subspace, we can use the following
formula

X;l =biz1, = blb{Xn S RD
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Mathematical Derivations

@ Assume we have found the first m — 1 principal components as the m — 1
eigenvectors of S that are associated with the largest m — 1 eigenvalues.
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Mathematical Derivations

@ Assume we have found the first m — 1 principal components as the m — 1
eigenvectors of S that are associated with the largest m — 1 eigenvalues.

@ The m-th principal component can be found by subtracting the effect of the
first m — 1 principal components by, ...,b,,_1 from the data, by trying to
find principal components that compress the remaining information.

m—1
X=X-— Z b;b!/X =X - B,,_1X,
i=1
where X = [x1,...,xy] € RP*N and B, 1 = Zg}l b;b! is the
projection matrix onto the subspace spanned by by, ..., b, 1.
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Mathematical Derivations

@ Assume we have found the first m — 1 principal components as the m — 1
eigenvectors of S that are associated with the largest m — 1 eigenvalues.

@ The m-th principal component can be found by subtracting the effect of the
first m — 1 principal components by, ...,b,,_1 from the data, by trying to
find principal components that compress the remaining information.

m—1
X=X-— Z b;b!/X =X - B,,_1X,
i=1
where X = [x1,...,xy] € RP*N and B, 1 = Zg}l b;b! is the
projection matrix onto the subspace spanned by by, ..., b, 1.
@ The m-th PC can be found by maximizing the variance
_ T2 _pT §
Var(zm) —Nszn—NZb )2 = bl Sb,,

subject to ||b,,||* =

where S is the covariance matrix of X
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Mathematical Derivations

Assume we have found the first m — 1 principal components as the m — 1
eigenvectors of S that are associated with the largest m — 1 eigenvalues.
The m-th principal component can be found by subtracting the effect of the
first m — 1 principal components by, ...,b,,_1 from the data, by trying to
find principal components that compress the remaining information.

m—1
X=X-— Z b;b!/X =X - B,,_1X,

i=1
where X = [x1,...,xy] € RP*N and B, 1 = Zg}l b;b! is the
projection matrix onto the subspace spanned by by, ..., b, 1.
The m-th PC can be found by maximizing the variance

_ T2 _pT §
Var(zm) —Nszn—NZb )2 = bl Sb,,

subject to ||b,,||* =

where S is the covariance matrix of X
b,, is also an eigenvector of S and Var(z,,) = bl Sb,, = \,, is the m-th
largest eigenvalue of S
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@ We can reduce the dimensionality of our data, by using the M eigenvectors
of the covariance matrix S associated with the M largest eigenvalues.
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Summary of PCA

@ We can reduce the dimensionality of our data, by using the M eigenvectors
of the covariance matrix S associated with the M largest eigenvalues.

@ The projection matrix B consists of the eigenvectors of S

@ The amount of variance PCA captured with the first M principal components

IS
M
S
=1
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Summary of PCA

@ We can reduce the dimensionality of our data, by using the M eigenvectors
of the covariance matrix S associated with the M largest eigenvalues.

@ The projection matrix B consists of the eigenvectors of S

@ The amount of variance PCA captured with the first M principal components

IS
M
S
=1

@ The variance lost by data compression via PCA is
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Intuition behind t-SNE

b

2D 1D
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Intuition behind t-SNE
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Intuition behind t-SNE
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Intuition behind t-SNE

2D ! )
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Intuition behind t-SNE

2D
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Intuition behind t-SNE

P4
Y 2D
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Intuition behind t-SNE

t-SNE iteratively tries to make distances in low-
dimensional space to be similar to distances in high-
dimensional space

2D 1D
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What have we learned today?

v Dimensionality Reduction
v" Principal Component Analysis
v" t-Distributed Stochastic Neighbor Embedding (t-SNE)
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