
Machine Learning
Unsupervised Learning



Topics of previous lectures

X Ingredients of Machine Learning

X Classification Basics, Basic Linear Classifier

X K-Nearest Neighbours and Naive Bayes Classifier

X Linear and Quadratic Discriminant Analysis

X Support Vector Machines (SVM)

X Decision Trees

X Ensemble Methods (Bagging, Weighted Voting, Stacking)

X Regression Methods

X Evaluation and Scoring of Classifiers

X Ensemble Methods (Boosting)

X Clustering (Hierarchical, K-Means, K-Medoids, DBSCAN)
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Topics of today’s lecture

Dimensionality Reduction

Principal Component Analysis (PCA)

t-Distributed Stochastic Neighbor Embedding (t-SNE)
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Motivation for Dimensionality Reduction

Working directly with high-dimensional data, such as images, comes with
some difficulties

High-dimensional data is often overcomplete, i.e., many dimensions are
redundant and can be explained by a combination of other dimensions.

Dimensions in high-dimensional data are often correlated so that the data
possesses an intrinsic lower-dimensional structure.

Dimensionality reduction exploits structure and correlation and allows us to
work with a more compact representation of the data, ideally without losing
much information.

It can also be useful to detect potential patterns in high dimensial data, by
visualizing the first 2-3 projections.
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Problem Setting of PCA

In PCA, we are interested in finding projections x′n of data points xn that are
as similar to the original data points as possible, but which have a
significantly lower intrinsic dimensionality.

Suppose we have a dataset X = {x1, . . . ,xN} ∈ RN×D, where
xn ∈ RD, E(X) = 0 and the sample covariance of X is

S =
1

N
XTX =

1

N

N∑
n=1

xnx
T
n

We assume there exists a low-dimensional compressed representation (code)
of xn

zn = BTxn ∈ RM ,

where B = [b1, . . . ,bM ] ∈ RD×M is the projection matrix.

We further assume that the columns of B are orthonormal, so that bT
i bj = 0

iff i 6= j and bT
i bi = 1

We seek an M -dimensional subspace U ⊆ RD, dim(U) = M < D onto
which we project the data

We denote the projected data as x′n ∈ U and their coordinates by zn
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Problem Setting of PCA

We can describe the information contained in the data by looking at the
spread of the data and measure it with variance

In this setting, retaining most information after data compression is
equivalent to capturing the largest amount of variance in the low-dimensional
representation

We maximize the variance of the low-dimensional code using a sequential
approach.

We start by seeking a single vector b1 ∈ RD that maximizes variance of the
projected data

Var(z1) =
1

N

N∑
n=1

z21n =
1

N

N∑
n=1

(bT
1 xn)2 =

Note that if we would not put a unit vector contraint on b1, the variance
would increase for longer-length b1.
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=
1

N

N∑
n=1

bT
1 xnx

T
nb1 = bT

1

( 1

N

N∑
n=1

xnx
T
n

)
b1 = bT

1 Sb1,

where S is the sample covariance matrix.
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Mathematical Derivations

We need to solve the following constrained optimization problem

max
b1

bT
1 Sb1

subject to ‖b1‖2 = 1
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Finding the partial derivatives w.r.t. b1 and λ1

∂Λ

∂b1
= 2bT

1 S − 2λ1b
T
1 ,

∂Λ

∂λ1
= 1− bT

1 b1

Setting these partial derivatives to 0 gives us

Sb1 = λ1b1

bT
1 b1 = 1

Does this look familiar?
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Mathematical Derivations

Sb1 = λ1b1

bT
1 b1 = 1

b1 is an eigenvector of the data covariance matrix S, and the Lagrange multiplier
λ1 plays the role of the corresponding eigenvalue.
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Mathematical Derivations

Sb1 = λ1b1

bT
1 b1 = 1

b1 is an eigenvector of the data covariance matrix S, and the Lagrange multiplier
λ1 plays the role of the corresponding eigenvalue.
The objective can be re-written as

Var(z1) = bT
1 Sb1 = λ1b

T
1 b1 = λ1,

the variance of the data projected onto a one-dimensional subspace equals the
eigenvalue that is associated with the basis vector b1 that spans this subspace.
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Sb1 = λ1b1

bT
1 b1 = 1

b1 is an eigenvector of the data covariance matrix S, and the Lagrange multiplier
λ1 plays the role of the corresponding eigenvalue.
The objective can be re-written as

Var(z1) = bT
1 Sb1 = λ1b

T
1 b1 = λ1,

the variance of the data projected onto a one-dimensional subspace equals the
eigenvalue that is associated with the basis vector b1 that spans this subspace.
To obtain the projection of xn on the obtained subspace, we can use the following
formula

x′n = b1z1n = b1b
T
1 xn ∈ RD
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Mathematical Derivations

Assume we have found the first m− 1 principal components as the m− 1
eigenvectors of S that are associated with the largest m− 1 eigenvalues.

The m-th principal component can be found by subtracting the effect of the
first m− 1 principal components b1, . . . ,bm−1 from the data, by trying to
find principal components that compress the remaining information.

X̂ = X−
m−1∑
i=1

bib
T
i X = X−Bm−1X,

where X = [x1, . . . ,xN ] ∈ RD×N and Bm−1 =
∑m−1

i=1 bib
T
i is the

projection matrix onto the subspace spanned by b1, . . . ,bm−1.
The m-th PC can be found by maximizing the variance

Var(zm) =
1

N

N∑
n=1

z2mn =
1

N

N∑
n=1

(bT
mx̂n)2 = bT

mŜbm

subject to ‖bm‖2 = 1

where Ŝ is the covariance matrix of X̂
bm is also an eigenvector of S and Var(zm) = bT

mSbm = λm is the m-th
largest eigenvalue of S
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Summary of PCA

We can reduce the dimensionality of our data, by using the M eigenvectors
of the covariance matrix S associated with the M largest eigenvalues.

The projection matrix B consists of the eigenvectors of S

The amount of variance PCA captured with the first M principal components
is

M∑
i=1

λm

The variance lost by data compression via PCA is

D∑
i=M+1

λm
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Intuition behind t-SNE
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What have we learned today?

X Dimensionality Reduction

X Principal Component Analysis

X t-Distributed Stochastic Neighbor Embedding (t-SNE)
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