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cGANs

These GANs use extra label information and result in better quality images
and are able to control how generated images will look.

In this case we will
do the following optimization

min
G

max
D

(Ex∼pdata [logD (x |y)] + Ez∼pz [log (1− D (G (z |y)))])
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CycleGANs

Image-to-image translation is a class of vision and graphics problems
where the goal is to learn the mapping between an input image and an
output image using a training set of aligned image pairs.

However, for many tasks, paired training data will not be available.
So our task is to learn how to translate an image from a source
domain X to a target domain Y in the absence of paired examples.
Our goal is to learn a mapping G : X → Y such that the distribution
of images from G (X ) is indistinguishable from the distribution Y .
We will couple it with an inverse mapping F : Y → X and introduce a
cycle consistency loss to enforce F (G (X )) ≈ X .
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CycleGANs

Our loss function will be the following

L (G ,F ,DX ,DY ) = LGAN (G ,DY ,X ,Y )+LGAN (F ,DX ,Y ,X )+λLcyc (G ,F ) ,

where
LGAN (G ,DY ,X ,Y )

= Ey∼pdata(y) [logDY (y)] + Ex∼pdata(x) [log (1− DY (G (x)))]

LGAN (F ,DX ,Y ,X )

= Ex∼pdata(x) [logDX (x)] + Ey∼pdata(y) [log (1− DX (F (y)))]

Lcyc (G ,F ) = Ex∼pdata(x) [‖F (G (x))− x‖1]+Ey∼pdata(y) [‖G (F (y))− y‖1]

We aim to solve

G ∗,F ∗ = arg min
G ,F

max
DX ,DY

L (G ,F ,DX ,DY )
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Huber Loss

Lδ (y , f (x)) =

{
1
2 (y − f (x))2 , for |y − f (x)| ≤ δ
δ |y − f (x)| − 1

2δ
2, otherwise.
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WGANs

Let X be a compact metric set (e.g [0, 1]d) and let Σ denote the set of all
Borel subsets of X .

Total Variation (TV) distance

δ(Pr ,Pg ) = sup
A∈Σ
|Pr (A)− Pg (A)| .

Kullback-Leibler (KL) divergence

KL(Pr‖Pg ) =

∫
R

log

(
pr (x)

pg (x)

)
pr (x) dµ (x) .

Jensen-Shannon (JS) distance

JS(Pr‖Pg ) =
1
2

(KL(Pr‖Pm) + KL(Pg‖Pm))

where Pm =
Pr + Pg

2
.
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WGANs

The Earth-Mover (EM) distance or Wasserstein-1

W (Pr ,Pg ) = inf
γ∈Π(Pr ,Pg )

E(x ,y)∼γ (‖x − y‖)

where Π (Pr ,Pg ) denotes the set of all joint distributions γ (x , y)
whose marginals are respectively Pr and Pg .
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Example

Let Z ∼ U [0, 1], P0 be the distribution of points (0,Z ) ∈ R2 and
gθ (z) = (θ, z), then

δ (P0,Pθ) =

{
1, if θ 6= 0
0, if θ = 0,

KL (P0‖Pθ) =

{
∞, if θ 6= 0
0, if θ = 0,

JS (P0‖Pθ) =

{
log 2, if θ 6= 0
0, if θ = 0,

W (P0,Pθ) = |θ|
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WGANs

Note that

All distances other than EM are not continuous.
When θt → 0, the sequence (Pθt )t∈N converges to P0 under the EM
distance, but does not converge at all under either the JS, KL, reverse
KL or TV divergences.
Only EM distance has informative gradient.
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Lipschitz functions

Definition 1
Let X and Y are normed vector spaces. A function f : X → Y is called

K-Lipschitz if there exists a real constant K > 0 such that, for all x1
and x2 in X

‖f (x1)− f (x2) ‖ ≤ K‖x1 − x2‖.

local Lipschitz if for every x ∈ X there exists a neighbourhood U of x
such that f is Lipschitz on U.

Theorem 1
If function f : Rn → R has bounded gradient, then f is a Lipschitz function.
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