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Partial Differentiation and Gradients

Definition

For a function f : Rn → R (of n variables x1, . . . , xn) we define the
partial derivatives as

f ′x1
(x) =

∂f

∂x1
(x) = lim

h→0

f(x1 + h, x2, . . . , xn)− f(x1, x2, . . . , xn)

h
...

f ′xn
(x) =

∂f

∂xn
(x) = lim

h→0

f(x1, x2, . . . , xn + h)− f(x1, x2, . . . , xn)

h
.

The row vector

∇f =
df

dx
=

[
∂f(x)

∂x1

∂f(x)

∂x2
. . .

∂f(x)

∂xn

]
∈ R1×n,

is called the gradient of f or the Jacobian.
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Partial Differentiation and Gradients

Differentiation Rules

If the functions f and g have partial derivatives, then

Sum Rule:
∂

∂xi
(f(x) + g(x)) =

∂f(x)

∂xi
+
∂g(x)

∂xi

Product Rule:
∂

∂xi
(f(x) · g(x)) =

∂f(x)

∂xi
g(x) + f(x)

∂g(x)

∂xi

Example

Find the gradient of the following functions:

a) f : R2 → R defined by f(x1, x2) = (2x1 + 3x2)
3

b) f : R3 → R defined by f(x, y, z) = e2x + y2z3

Example

Given z(x, y) = x2 + y2 where x(r, t) = r cos(t) and y(r, t) = r + t,

determine the value of
∂z

∂t
and

∂z

∂r
.

V. Mikayelyan Math for ML August 25, 2020 3 / 22



Partial Differentiation and Gradients

Differentiation Rules

If the functions f and g have partial derivatives, then

Sum Rule:
∂

∂xi
(f(x) + g(x)) =

∂f(x)

∂xi
+
∂g(x)

∂xi

Product Rule:
∂

∂xi
(f(x) · g(x)) =

∂f(x)

∂xi
g(x) + f(x)

∂g(x)

∂xi

Example

Find the gradient of the following functions:

a) f : R2 → R defined by f(x1, x2) = (2x1 + 3x2)
3

b) f : R3 → R defined by f(x, y, z) = e2x + y2z3

Example

Given z(x, y) = x2 + y2 where x(r, t) = r cos(t) and y(r, t) = r + t,

determine the value of
∂z

∂t
and

∂z

∂r
.

V. Mikayelyan Math for ML August 25, 2020 3 / 22



Partial Differentiation and Gradients

Differentiation Rules

If the functions f and g have partial derivatives, then

Sum Rule:
∂

∂xi
(f(x) + g(x)) =

∂f(x)

∂xi
+
∂g(x)

∂xi

Product Rule:
∂

∂xi
(f(x) · g(x)) =

∂f(x)

∂xi
g(x) + f(x)

∂g(x)

∂xi

Example

Find the gradient of the following functions:

a) f : R2 → R defined by f(x1, x2) = (2x1 + 3x2)
3

b) f : R3 → R defined by f(x, y, z) = e2x + y2z3

Example

Given z(x, y) = x2 + y2 where x(r, t) = r cos(t) and y(r, t) = r + t,

determine the value of
∂z

∂t
and

∂z

∂r
.

V. Mikayelyan Math for ML August 25, 2020 3 / 22



Chain Rule

Let z be a function of two variables, x, y and each of these variables x, y
be in turn functions of two variables, t, s.Then

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
=

[
∂z

∂x

∂z

∂y

]∂x∂t∂y
∂t

 = ∇z ∂x
∂t

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
=

[
∂z

∂x

∂z

∂y

]∂x∂s∂y
∂s

 = ∇z ∂x
∂s
.
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Example

Given z(x, y) = x2 + y2 where x(r, t) = r cos(t) and y(r, t) = r sin(t),

determine the value of
∂z

∂t
and

∂z

∂r
using the chain rule. Verify the results

by expressing z as a function of r, t and computing the partial derivatives
directly.

In general, assume z is a function of n variables, x1, . . . , xn and each of
these variables are in turn functions of m variables, t1, t2, . . . , tm. Then for
any variable ti, i = 1, 2, . . . ,m we have the following,

∂z

∂ti
=

∂z

∂x1

∂x1
∂ti

+
∂z

∂x2

∂x2
∂ti

+ . . .+
∂z

∂xn

∂xn
∂ti

Example

Find the partial derivatives
∂z

∂ti
, i = 1, 2, 3 of the function z(x, y) where

x = t1 + 2t2 + 4t3 and y = t1 − 3t2 + 5t3.
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Gradients of Vector-Valued Functions

Let f : Rn → Rm be a vector valued function.

Then for a vector
x =

[
x1 . . . xn

]T ∈ Rn, the value of the function f at point x is a
vector given as

f(x) =


f1(x)
f2(x)

...
fm(x)

 ∈ Rm

Here the functions fi : Rn → R are real-valued functions.
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Gradients of Vector-Valued Functions

Therefore, the partial derivative of a vector-valued function
f : Rn → Rm with respect to xi ∈ R, i = 1, . . . , n, is given as the vector

∂f

∂xi
=


∂f1
∂xi
∂f2
∂xi
...

∂fm
∂xi

 ∈ Rm.

Hence the gradient of the vector-valued function f : Rn → Rm is

∇f =

[
∂f

∂x1
. . .

∂f

∂xn

]
=


∂f1
∂x1

. . . ∂f1
∂xn

∂f2
∂x1

. . . ∂f2
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 ∈ Rm×n
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Gradients of Vector-Valued Functions

Note that gradient of the vector-valued function can also be represented as
follows

∇f =

∇f1...
∇fm

 =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

...
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 ∈ Rm×n

Definition

The Jacobian matrix is the matrix of all first-order partial derivatives of a
vector-valued function f : Rn → Rm. The Jacobian matrix J of f is an
m× n matrix, usually defined and arranged as follows:

J = ∇f =

[
∂f

∂x1
. . .

∂f

∂xn

]
=


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 , Jij =
∂fi
∂xj

.
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Gradients of Vector-Valued Functions

150 Vector Calculus

transformations; for nonlinear transformations (which become relevant in2817

Chapter 6), we can follow a more general approach using partial deriva-2818

tives.2819

For this approach, we consider a function f : R2 → R2 that performs
a variable transformation. In our example, f maps the coordinate repre-
sentation of any vector x ∈ R2 with respect to (b1, b2) onto the coordi-
nate representation y ∈ R2 with respect to (c1, c2). We want to identify
the mapping so that we can compute how an area (or volume) changes
when it is being transformed by f . For this we need to find out how f(x)
changes if we modify x a bit. This question is exactly answered by the
Jacobian matrix df

dx
∈ R2×2. Since we can write

y1 = −2x1 + x2 (5.73)

y2 = x1 + x2 (5.74)

we obtain the functional relationship between x and y, which allows us
to get the partial derivatives

∂y1

∂x1

= −2 ,
∂y1

∂x2

= 1 ,
∂y2

∂x1

= 1 ,
∂y2

∂x2

= 1 (5.75)

and compose the Jacobian as

J =

[
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

]
=

[−2 1
1 1

]
. (5.76)

The Jacobian represents the coordinate transformation we are lookingGeometrically, the
Jacobian
determinant gives
the magnification/
scaling factor when
we transform an
area or volume.

2820

for and is exact if the coordinate transformation is linear (as in our case),2821

and (5.76) recovers exactly the basis change matrix in (5.72). If the co-2822

ordinate transformation is nonlinear, the Jacobian approximates this non-2823

linear transformation locally with a linear one. The absolute value of the2824

Jacobian determinant |det(J)| is the factor areas or volumes are scaled by
Jacobian
determinant

2825

when coordinates are transformed. In our case, we obtain |det(J)| = 3.2826

The Jacobian determinant and variable transformations will become2827

relevant in Section 6.5 when we transform random variables and prob-2828

ability distributions. These transformations are extremely relevant in ma-2829

chine learning in the context of training deep neural networks using the2830

reparametrization trick, also called infinite perturbation analysis.2831

♦2832

Figure 5.6
Overview of the
dimensionality of
(partial) derivatives.

f (x)
x

∂f

∂x

Throughout this chapter, we have encountered derivatives of functions.2833

Figure 5.6 summarizes the dimensions of those gradients. If f : R →2834

R the gradient is simply a scalar (top-left entry). For f : RD → R the2835

gradient is a 1 × D row vector (to-right entry). For f : R → RE , the2836

gradient is an E × 1 column vector, and for f : RD → RE the gradient is2837

an E ×D matrix.2838

Draft (2018-08-30) from Mathematics for Machine Learning. Errata and feedback to https://mml-book.com.

Figure: The dimension of the Jacobian Jf

In particular, the Jacobian of a function f : Rn → R1, which maps a
vector x ∈ Rn onto a scalar, is a row vector (matrix of dimension 1× n).

Example

Find the Jacobian of the following functions:

a) f : R2 → R, given by f(x) = x1 + x32
b) f : R2 → R3, given by f(x) = [2x1, x1x2, x1 + 3x2]

T
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Gradients of Vector-Valued Functions
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sentation of any vector x ∈ R2 with respect to (b1, b2) onto the coordi-
nate representation y ∈ R2 with respect to (c1, c2). We want to identify
the mapping so that we can compute how an area (or volume) changes
when it is being transformed by f . For this we need to find out how f(x)
changes if we modify x a bit. This question is exactly answered by the
Jacobian matrix df

dx
∈ R2×2. Since we can write

y1 = −2x1 + x2 (5.73)

y2 = x1 + x2 (5.74)

we obtain the functional relationship between x and y, which allows us
to get the partial derivatives

∂y1

∂x1

= −2 ,
∂y1

∂x2

= 1 ,
∂y2

∂x1

= 1 ,
∂y2

∂x2

= 1 (5.75)

and compose the Jacobian as

J =

[
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

]
=

[−2 1
1 1

]
. (5.76)

The Jacobian represents the coordinate transformation we are lookingGeometrically, the
Jacobian
determinant gives
the magnification/
scaling factor when
we transform an
area or volume.

2820

for and is exact if the coordinate transformation is linear (as in our case),2821

and (5.76) recovers exactly the basis change matrix in (5.72). If the co-2822

ordinate transformation is nonlinear, the Jacobian approximates this non-2823

linear transformation locally with a linear one. The absolute value of the2824

Jacobian determinant |det(J)| is the factor areas or volumes are scaled by
Jacobian
determinant

2825

when coordinates are transformed. In our case, we obtain |det(J)| = 3.2826

The Jacobian determinant and variable transformations will become2827

relevant in Section 6.5 when we transform random variables and prob-2828

ability distributions. These transformations are extremely relevant in ma-2829

chine learning in the context of training deep neural networks using the2830

reparametrization trick, also called infinite perturbation analysis.2831

♦2832

Figure 5.6
Overview of the
dimensionality of
(partial) derivatives.

f (x)
x

∂f

∂x

Throughout this chapter, we have encountered derivatives of functions.2833

Figure 5.6 summarizes the dimensions of those gradients. If f : R →2834

R the gradient is simply a scalar (top-left entry). For f : RD → R the2835

gradient is a 1 × D row vector (to-right entry). For f : R → RE , the2836

gradient is an E × 1 column vector, and for f : RD → RE the gradient is2837

an E ×D matrix.2838
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Figure: The dimension of the Jacobian Jf

In particular, the Jacobian of a function f : Rn → R1, which maps a
vector x ∈ Rn onto a scalar, is a row vector (matrix of dimension 1× n).

Example

Find the Jacobian of the following functions:

a) f : R2 → R, given by f(x) = x1 + x32
b) f : R2 → R3, given by f(x) = [2x1, x1x2, x1 + 3x2]

T
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Gradients of Vector-Valued Functions

Consider the vector valued function f : R2 → R2 given by

f(x) = f(x, y) =

[
3x
−2y

]
.

x

y

1 3

1

-2

Note that the image of the [0, 1]2 (the blue square) is the rectangle
[0, 3]× [−2, 0] (depicted in red). The quotient of the areas of the

rectangle and the square is 6 and it is equal to | detJf | =
∣∣∣∣det

[
3 0
0 −2

]∣∣∣∣
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Gradients of Vector-Valued Functions

A nonlinear map f : R2 → R2 sends a small square (left, in red) to a
distorted parallelogram (right, in red). The Jacobian at a point gives the
best linear approximation of the distorted parallelogram near that point
(right, in translucent white), and the Jacobian determinant gives the ratio
of the area of the approximating parallelogram to that of the original
square.
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Gradients of Vector-Valued Functions

Example

Find the gradient of the vector-valued function f : R2 → R2, given by

f(x) =

[
1 2
3 4

] [
x1
x2

]
.

Example

Prove that the Jacobian of the vector-valued function f : Rn → Rm, given
by f(x) = Ax, where A ∈ Rm×n and x ∈ Rn is the matrix A, i.e.

Jf = A.
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Gradients of Vector-Valued Functions

Chain Rule (Matrix form)

Let g : Rn → Rm and f : Rm → Rk are differentiable functions, then

Jf◦g(a) = Jf (g(a))Jg(a), a ∈ Rn.

Note that Jf◦g(a) ∈ Rk×n, Jf (g(a)) ∈ Rk×m, and Jg(a) ∈ Rm×n.
Equivalently, if z = f(y) and y = g(x) then

∂z

∂x
=
∂z

∂y

∂y

∂x
.

Example

Find the Jacobians of the functions f ◦ g and g ◦ f , where f : R2 → R,

given by f(x) = x1 + x22 and g : R→ R2 given by g(t) =

[
et

t2

]
.
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Gradients of Vector-Valued Functions

Example

Using the formula
∂xTBx

∂x
= xT (B +BT ) deduce that

∂xTx

∂x
= 2xT .
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Gradients of Matrices

Scalar y
Notation Type

Vector y (size m)
Notation Type

Scalar x ∂y
∂x scalar ∂y

∂x size-m col. vector

Vector x (size n) ∂y
∂x size-n row vector ∂y

∂x m× n matrix

Matrix X (size p× q) ∂y
∂X p× q matrix ∂y

∂X m× (p× q) tensor

Example

(Gradient of Scalars with respect to Matrices) Let

y = y(X) = tr(X), where X ∈ Rp×p.

Find the gradient
∂y

∂X
.
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Gradients of Matrices

Example

(Gradient of Vectors with respect to Matrices)
Let v ∈ Rq be a fixed vector and f : Rp×q → Rp be a function given by

f(X) = Xv, where X ∈ Rp×q.

Find the gradient
∂y

∂X
of the function y = f(X).
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Gradients of Matrices

Matrix (size m× k)
Notation Type

Scalar x ∂Y
∂x m× k matrix

Vector x (size n) ∂Y
∂x (m× k)× n tensor

Matrix X (size p× q) ∂Y
∂X (m× k)× (p× q) tensor

Example

(Gradient of Matrices with respect to Matrices)
Let f : Rp×q → Rq×q be a function given by

f(X) = XTX, where X ∈ Rp×q.

Find the gradient
∂

∂X
of the function = f(X).
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Useful Identities for Computing Gradients

156 Vector Calculus

∂pqij =


Liq if j = p, p 6= q
Lip if j = q, p 6= q
2Liq if j = p, p = q
0 otherwise

(5.111)

From (5.106), we know that the desired gradient has the dimension
(n × n) × (m × n), and every single entry of this tensor is given by ∂pqij
in (5.111), where p, q, j = 1, . . . , n and i = q, . . . ,m.

5.5 Useful Identities for Computing Gradients2856

In the following, we list some useful gradients that are frequently required
in a machine learning context (Petersen and Pedersen, 2012):

∂

∂X
f(X)> =

(
∂f(X)

∂X

)>
(5.112)

∂

∂X
tr(f(X)) = tr

(
∂f(X)

∂X

)
(5.113)

∂

∂X
det(f(X)) = det(f(X))tr

(
f−1(X)

∂f(X)

∂X

)
(5.114)

∂

∂X
f−1(X) = −f−1(X)

∂f(X)

∂X
f−1(X) (5.115)

∂a>X−1b

∂X
= −(X−1)>ab>(X−1)> (5.116)

∂x>a

∂x
= a> (5.117)

∂a>x

∂x
= a> (5.118)

∂a>Xb

∂X
= ab> (5.119)

∂x>Bx

∂x
= x>(B +B>) (5.120)

∂

∂s
(x−As)>W (x−As) = −2(x−As)>WA for symmetric W

(5.121)

Here, we use tr as the trace operator (see Definition 4.3) and det is the2857

determinant (see Section 4.1).2858

5.6 Backpropagation and Automatic Differentiation2859

In many machine learning applications, we find good model parameters2860

by performing gradient descent (Chapter 7), which relies on the fact that2861

Draft (2018-08-30) from Mathematics for Machine Learning. Errata and feedback to https://mml-book.com.
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Limits of Multivariable Functions

Let a ∈ Rn and ε > 0. Denote B (a, ε) = {x ∈ Rn : ‖x− a‖ < ε}.

Definition

Let f : X → Rm, X ⊂ Rn, a ∈ Rn and A ∈ Rm. We will say that
lim
x→a

f (x) = A if for all ε > 0 there exists δ > 0, such that from

0 < ‖x− a‖n < δ, x ∈ X, follows that ‖f (x)−A‖m < ε.

Definition

Let f : X × Y → R, X,Y ⊂ R, (x0, y0) ∈ R2 and A ∈ R. We will say
that lim

x→x0
y→y0

f (x) = A if for all ε > 0 there exists δ > 0, such that from

|x− x0| < δ, |y − y0| < δ, (x0, y0) 6= (0, 0) , x ∈ X, y ∈ Y , follows that
|f (x)−A| < ε.
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Limits of Multivariable Functions

Theorem

If lim
x→x0
y→y0

f (x, y) = A and lim
x→x0

f (x, y) = ϕ (y) for all y ∈ Y , y 6= y0, then

lim
y→y0

ϕ (y) = lim
y→y0

lim
x→x0

f (x, y) = A.

Example

1 f (x, y) = x sin
1

y
, (x0, y0) = (0, 0),

2 f (x, y) =

{
0, if x 6= y,

1, if x = y
, (x0, y0) = (0, 0).
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f (x, y) = ϕ (y) for all y ∈ Y , y 6= y0, then

lim
y→y0

ϕ (y) = lim
y→y0

lim
x→x0

f (x, y) = A.

Example

1 f (x, y) = x sin
1

y
, (x0, y0) = (0, 0),

2 f (x, y) =

{
0, if x 6= y,

1, if x = y
, (x0, y0) = (0, 0).
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Differential

Let f : X → R, X ⊂ R2 and (x0, y0) is an interior point of X.

Definition

f is called differentiable at the point (x0, y0) if there exists A,B ∈ R such
that

f (x0 + ∆x, y0 + ∆y) = f (x0, y0) +A∆x+B∆y + o (ρ) , ρ→ 0,

where ρ =
√

∆x2 + ∆y2.

Theorem

If partial derivatives of the first degree of f are continuous at (x0, y0) then
it is differentiable at (x0, y0). The inverse is not true.
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Differential

Example

f (x, y) =

x2 sin
1

x
, if (x, y) 6= (0, 0) ,

0, if (x, y) = (0, 0)

Definition

df (x0, y0) =
∂f

∂x
(x0, y0) ∆x+

∂f

∂y
(x0, y0) ∆y is called differential of f .
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