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Problems with RNNs

Sequential computation prevents parallelization.

Despite GRUs and LSTMs, RNNs still need attention mechanism to
deal with long range dependencies – path length for codependent
computation between states grows with sequence.
But if attention gives us access to any state, maybe we don’t need the
RNN?

V. Mikayelyan Deep Learning December 8, 2020 3 / 29



Problems with RNNs

Sequential computation prevents parallelization.
Despite GRUs and LSTMs, RNNs still need attention mechanism to
deal with long range dependencies – path length for codependent
computation between states grows with sequence.

But if attention gives us access to any state, maybe we don’t need the
RNN?

V. Mikayelyan Deep Learning December 8, 2020 3 / 29



Problems with RNNs

Sequential computation prevents parallelization.
Despite GRUs and LSTMs, RNNs still need attention mechanism to
deal with long range dependencies – path length for codependent
computation between states grows with sequence.
But if attention gives us access to any state, maybe we don’t need the
RNN?

V. Mikayelyan Deep Learning December 8, 2020 3 / 29



Transformer
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Self Attention Layer

This layer aims to encode a word based on all other words in the
sequence. It measures the encoding of the word against the encoding
of another word and gives a new encoding.

Given an embedding x, it learns three separate smaller embeddings
from it — query, key and value.
During the training phase, the Wq, Wk , and Wv matrices are learnt to
get the query, key and value embeddings.
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Self Attention Layer

V. Mikayelyan Deep Learning December 8, 2020 6 / 29



Self Attention Layer

Say x1 wants to know its value with respect to x2. So it will ‘query’ x2.

x2 will provide the answer in the form of its own ‘key’, which can then
be used to get a score representing how much it values x1 by taking a
dot product with the query. Since both have the same size, this will be
a single number.
Then x1 will take all these scores and perform softmax.
This step will be performed with every word.
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Self Attention Layer
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Self Attention Layer

x1 will now use this score and the ‘value’ of the corresponding word to
get a new value of itself with respect to that word.

If the word is not relevant to x1 then the score will be small and the
corresponding value will be reduced a factor of that score and similarly
the significant words will get their values bolstered by the score.
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Self Attention Layer

V. Mikayelyan Deep Learning December 8, 2020 10 / 29



Self Attention Layer

Finally, the word x1 will create a new ‘value’ for itself by summing up the
values received. This will be the new embedding of the word.
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Self Attention

Attention (q,K ,V ) =
∑
i

eq·ki∑
j

eq·kj
vi

where
inputs: a query q and a set of key-value (K-V) pairs to an output,

query, keys, values and output are all vectors,
output is a convex combination of values,
weight of each value is computed by an inner product of query and
corresponding key,
queries and keys have the same dimensionality dk , values have dv .
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Self Attention

When we have multiple queries q, we stack them in a matrix Q:

Attention (Q,K ,V ) = Softmax
(
QKT

)
V .

Problem: as dk gets large, the variance of qTk increases, thus some
values inside the softmax gets large, hence its gradients gets smaller.
Solution:

Attention (Q,K ,V ) = Softmax
(
QKT

√
dk

)
V
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Multi-Head Attention Layer

Multihead attention assumes that all inputs and outputs have the same
length dmodel . If inputs hasn’t length dmodel , we pass it through one fully
connected layer.

Multihead = Concat (head1, . . . , headh)W o

where
headi = Attention

(
xWQ

i , xWK
i , xW V

i

)
WQ

i ∈ Rdmodel×dk ,WK
i ∈ Rdmodel×dk ,W V

i ∈ Rdmodel×dv ,WO ∈ Rhdv×dmodel
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Masked Multi-Head Attention Layer

At any position, a word may depend on both the words before it as
well as the ones after it.

This is why in the self-attention layer, the query was performed with
all words against all words.
But at the time of decoding, when trying to predict the next word in
the sentence, logically, it should not know what are the words which
are present after the word we are trying to predict.
This is why the embeddings for all these are masked by multiplying
with 0.
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Feed-Forward Network

this part is a position free neural network, which consists of two fully
connected layers with a ReLU activation in between:

FFN (x) = W2 · ReLU (W1x + b1) + b2

V. Mikayelyan Deep Learning December 8, 2020 16 / 29



Encoder-Decoder Architecture
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Encoder-Decoder Architecture
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Encoder-Decoder Architecture
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Transformer
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Dilated/Atrous Convolution

Definition 1
Let F : Z2 → R be a discrete function. Let Ωr = [−r , r ] ∩ Z2 and let
k : Ωr → R be a discrete filter of size (2r + 1)2. The discrete convolution
operator ∗ can be defined as

(F ∗ k) (p) =
∑

s+t=p

F (s) k (t)

Definition 2
Let F : Z2 → R be a discrete function. Let Ωr = [−r , r ] ∩ Z2 and let
k : Ωr → R be a discrete filter of size (2r + 1)2. The discrete l-dilated
convolution operator ∗l can be defined as

(F ∗l k) (p) =
∑

s+lt=p

F (s) k (t)
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Dilated/Atrous Convolution
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Dilated/Atrous Convolution
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1D Dilated Convolution
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Convolution as a Matrix Operation

This linear operation takes the input matrix flattened as a 16-dimensional
vector and produces a 4-dimensional vector that is later reshaped as the
2× 2 output matrix.
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Transposed Convolution (stride=0)
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Transposed Convolution (stride=0)
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Transposed Convolution (stride=1)
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Transposed Convolution (stride=1)
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UNet
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