V. Mikayelyan

Deep Learning

Vazgen Mikayelyan

December 8, 2020

FAS I DISCOVERING
THE FUTURE

Deep Learning

December

8, 2020

1/29

Outline

0 Transformers

V. Mikayelyan Deep Learning December 8, 2020 2/29

Problems with RNNs

@ Sequential computation prevents parallelization.

V. Mikayelyan Deep Learning December 8, 2020 3/29

Problems with RNNs

@ Sequential computation prevents parallelization.

@ Despite GRUs and LSTMs, RNNs still need attention mechanism to
deal with long range dependencies — path length for codependent
computation between states grows with sequence.

V. Mikayelyan Deep Learning December 8, 2020 3/29

Problems with RNNs

@ Sequential computation prevents parallelization.

@ Despite GRUs and LSTMs, RNNs still need attention mechanism to
deal with long range dependencies — path length for codependent
computation between states grows with sequence.

e But if attention gives us access to any state, maybe we don't need the
RNN?

V. Mikayelyan Deep Learning December 8, 2020 3/29

Transformer

Output
Probabilities

Add & Norm

Add & Norm

((Add & Norm] -
TGIEANDT Multi-Head

Feed Attention
Forward Nx
| (Add & Norm Je—
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
t t 4
\)
Positional A A Positional
Encoding Encoding

Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

V. Mikayelyan Deep Learni

4/29

Self Attention Layer

@ This layer aims to encode a word based on all other words in the
sequence. It measures the encoding of the word against the encoding
of another word and gives a new encoding.

V. Mikayelyan Deep Learning December 8, 2020 5/29

Self Attention Layer

@ This layer aims to encode a word based on all other words in the
sequence. It measures the encoding of the word against the encoding
of another word and gives a new encoding.

e Given an embedding x, it learns three separate smaller embeddings
from it — query, key and value.

V. Mikayelyan Deep Learning December 8, 2020 5/29

Self Attention Layer

@ This layer aims to encode a word based on all other words in the
sequence. It measures the encoding of the word against the encoding
of another word and gives a new encoding.

e Given an embedding x, it learns three separate smaller embeddings
from it — query, key and value.

e During the training phase, the W,, Wy, and W, matrices are learnt to
get the query, key and value embeddings.

V. Mikayelyan Deep Learning December 8, 2020 5/29

Self Attention Layer

Query Value

Step 1: Create

three parts out

of every word
embedding

1I B [K [Vi |
zI L Q K| v, |
3I [Q| LK [T

V. Mikayelyan Deep Learning December 8, 2020 6/29

Self Attention Layer

@ Say x; wants to know its value with respect to x». So it will ‘query’ x».

V. Mikayelyan Deep Learning December 8, 2020 7/29

Self Attention Layer

@ Say x; wants to know its value with respect to x». So it will ‘query’ x».

@ xp will provide the answer in the form of its own ‘key’, which can then
be used to get a score representing how much it values x; by taking a
dot product with the query. Since both have the same size, this will be
a single number.

V. Mikayelyan Deep Learning December 8, 2020 7/29

Self Attention Layer

@ Say x; wants to know its value with respect to x». So it will ‘query’ x».

@ xp will provide the answer in the form of its own ‘key’, which can then
be used to get a score representing how much it values x; by taking a
dot product with the query. Since both have the same size, this will be
a single number.

@ Then xq will take all these scores and perform softmax.

V. Mikayelyan Deep Learning December 8, 2020 7/29

Self Attention Layer

@ Say x; wants to know its value with respect to x». So it will ‘query’ x».

@ xp will provide the answer in the form of its own ‘key’, which can then
be used to get a score representing how much it values x; by taking a
dot product with the query. Since both have the same size, this will be
a single number.

@ Then xq will take all these scores and perform softmax.

@ This step will be performed with every word.

V. Mikayelyan Deep Learning December 8, 2020 7/29

Self Attention Layer

#; Scores Divide

#; Scores Divide

o B oo

#; Scores Divide

V. Mikayelyan Deep Learning December 8, 2020 8/29

Self Attention Layer

@ x1 will now use this score and the ‘value’ of the corresponding word to
get a new value of itself with respect to that word.

V. Mikayelyan Deep Learning December 8, 2020 9/29

Self Attention Layer

@ x1 will now use this score and the ‘value’ of the corresponding word to
get a new value of itself with respect to that word.

o If the word is not relevant to x; then the score will be small and the
corresponding value will be reduced a factor of that score and similarly
the significant words will get their values bolstered by the score.

V. Mikayelyan Deep Learning December 8, 2020 9/29

Self Attention r

%, Values =

%, Values

%3 Values =

V. Mikayelyan Deep Learning December 8, 2020 10/29

Self Attention Layer

Finally, the word x1 will create a new ‘value' for itself by summing up the
values received. This will be the new embedding of the word.

%1emb 0 v +

+ i) +

L1

%, emb

E£] emb + ¥y + Vs = vy

V. Mikayelyan Deep Learning December 8, 2020 11/29

Self Attention

q-ki
Attention (g, K, V) = Y —=——v;
DL
]

where

@ inputs: a query q and a set of key-value (K-V) pairs to an output,

V. Mikayelyan Deep Learning December 8, 2020 12 /29

Self Attention

q-ki
Attention (g, K, V) = Y —=——v;
DL
]

where
@ inputs: a query q and a set of key-value (K-V) pairs to an output,

@ query, keys, values and output are all vectors,

V. Mikayelyan Deep Learning December 8, 2020 12 /29

Self Attention

q-ki
Attention (g, K, V) = Y —=——v;
DL
]

where
@ inputs: a query q and a set of key-value (K-V) pairs to an output,
@ query, keys, values and output are all vectors,

@ output is a convex combination of values,

V. Mikayelyan Deep Learning December 8, 2020 12 /29

Self Attention

q-ki
Attention (g, K, V) = Y —=——v;
DL
]

where
@ inputs: a query q and a set of key-value (K-V) pairs to an output,
@ query, keys, values and output are all vectors,
@ output is a convex combination of values,

@ weight of each value is computed by an inner product of query and
corresponding key,

V. Mikayelyan Deep Learning December 8, 2020 12 /29

Self Attention

q-ki
Attention (g, K, V) = Y —=——v;
DL
]

where
@ inputs: a query q and a set of key-value (K-V) pairs to an output,
@ query, keys, values and output are all vectors,
@ output is a convex combination of values,

@ weight of each value is computed by an inner product of query and
corresponding key,

@ queries and keys have the same dimensionality dy, values have d,.

V. Mikayelyan Deep Learning December 8, 2020 12 /29

Self Attention

When we have multiple queries q, we stack them in a matrix Q:

Attention (Q, K, V') = Softmax (QKT) V.

V. Mikayelyan Deep Learning December 8, 2020 13 /29

Self Attention

When we have multiple queries q, we stack them in a matrix Q:

Attention (Q, K, V') = Softmax (QKT) V.

@ Problem: as dj gets large, the variance of g7 k increases, thus some
values inside the softmax gets large, hence its gradients gets smaller.

V. Mikayelyan Deep Learning December 8, 2020 13 /29

Self Attention

When we have multiple queries q, we stack them in a matrix Q:

Attention (Q, K, V') = Softmax (QKT) V.

@ Problem: as dj gets large, the variance of g7 k increases, thus some
values inside the softmax gets large, hence its gradients gets smaller.

e Solution:

Attention (Q, K, V) = Softmax (QKT> %
s Vi

V. Mikayelyan Deep Learning December 8, 2020 13 /29

Multi-Head Attention Layer

Multihead attention assumes that all inputs and outputs have the same

length dmoger- If inputs hasn't length doqer, We pass it through one fully
connected layer.

V. Mikayelyan Deep Learning December 8, 2020 14 /29

Multi-Head Attention Layer

Multihead attention assumes that all inputs and outputs have the same
length dmoger- If inputs hasn't length doqer, We pass it through one fully
connected layer.

Multihead = Concat (heads, . .., heady) W°

where
head; = Attention (x\/\/,.Q,xVV,-K,le/,-V)

Q d xd K d, xd 1% d, xd, o hd, xd,
VVi c R model k’ VVI c R model k7 VVI c R model v’ W c R v model

V. Mikayelyan Deep Learning December 8, 2020 14 /29

Masked Multi-Head Attention Layer

@ At any position, a word may depend on both the words before it as
well as the ones after it.

V. Mikayelyan Deep Learning December 8, 2020 15 /29

Masked Multi-Head Attention Layer

@ At any position, a word may depend on both the words before it as
well as the ones after it.

@ This is why in the self-attention layer, the query was performed with
all words against all words.

V. Mikayelyan Deep Learning December 8, 2020 15 /29

Masked Multi-Head Attention Layer

@ At any position, a word may depend on both the words before it as
well as the ones after it.

@ This is why in the self-attention layer, the query was performed with
all words against all words.

@ But at the time of decoding, when trying to predict the next word in
the sentence, logically, it should not know what are the words which
are present after the word we are trying to predict.

V. Mikayelyan Deep Learning December 8, 2020 15 /29

Masked Multi-Head Attention Layer

@ At any position, a word may depend on both the words before it as
well as the ones after it.

@ This is why in the self-attention layer, the query was performed with
all words against all words.

@ But at the time of decoding, when trying to predict the next word in
the sentence, logically, it should not know what are the words which
are present after the word we are trying to predict.

@ This is why the embeddings for all these are masked by multiplying
with 0.

V. Mikayelyan Deep Learning December 8, 2020 15 /29

Feed-Forward Network

this part is a position free neural network, which consists of two fully
connected layers with a ReLU activation in between:

FFN (x) = Ws - ReLU (Wix + by) + by

V. Mikayelyan Deep Learning December 8, 2020 16 /29

Encoder-Decoder Architecture

Output Seq
4

Linear + Softmax
'y

(

Encoder L Decoder
- - Positi;nal :
Positional Encoding®_’
Encoding (9
Input Seq Shifted Input Seq

V. Mikayelyan Deep Learning December 8, 2020 17 /29

Encoder-Decoder Architecture

Output Seq

t

Linear + Softmax

—
1 <
Encoder 2
I J
(" M
Encoder 1
&
t
~
Encoder 0
A J
Positional
Encoding ®_’
Input Seq
V. Mikayelyan Deep Learning

Decoder 2
T Y
Decoder 1
t
Decoder O
J

Shifted Input Seq

December 8, 2020

18 /29

Encoder-Decoder Architecture

Queries []
Keys []
Values []

V. Mikayelyan Deep Learning December 8, 2020 19/29

Transformer

Output
Probabilities

Add & Norm

Add & Norm

((Add & Norm] -
TGIEANDT Multi-Head

Feed Attention
Forward Nx
| (Add & Norm Je—
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
t t 4
\)
Positional A A Positional
Encoding Encoding

Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

V. Mikayelyan Deep Learni December 8, 2020 20/29

Outline

@ Dilated and Transposed Convolutions

V. Mikayelyan Deep Learning December 8, 2020 21/29

Dilated/Atrous Convolution

Definition 1

Let F : 72 — R be a discrete function. Let Q, = [—r,r]NZ? and let
k :Q, — R be a discrete filter of size (2r + 1)?
operator * can be defined as

(Fxk)(p)= > _ F(s)k(t)

s+t=p

. The discrete convolution

V. Mikayelyan Deep Learning December 8, 2020 22/29

Dilated/Atrous Convolution

Let F : 72 — R be a discrete function. Let Q, = [—r,r]NZ? and let
k :Q, — R be a discrete filter of size (2r + 1). The discrete convolution

operator * can be defined as

(Fxk)(p)= Y F(s)k(t)

s+t=p
Let F : Z2 — R be a discrete function. Let Q, = [—r,r] N Z? and let

k :Q, — R be a discrete filter of size (2r +1)?. The discrete |-dilated
convolution operator *; can be defined as

(Frik)(p)= > F(s)k(t)

s+lt=p

v

V. Mikayelyan Deep Learning December 8, 2020 22 /29

Dilated/Atrous Convolution

2 2 2 2

V. Mikayelyan Deep Learning December 8, 2020 23 /29

Dilated/Atrous Convolution

(@ (W]

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F} is produced from Fj by a 1-dilated convolution; each element in F}
has a receptive field of 3 x 3. (b) F3 is produced from F; by a 2-dilated convolution; each element
in Fy has a receptive field of 7 x 7. (c) F3 is produced from F3 by a 4-dilated convolution; each
element in F3 has a receptive field of 15x 15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

V. Mikayelyan Deep Learning December 8, 2020 24 /29

1D Dilated Convolution

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

Figure 3: Visualization of a stack of dilated causal convolutional layers.

V. Mikayelyan Deep Learning December 8, 2020 25 /29

Convolution as a Matrix Operation

- ®e»

V. Mikayelyan Deep Learning December 8, 2020 26 /29

Convolution as a Matrix Operation

- ®e»

w0 Wo1 W2 0wy wy wie 0wy way wos 0 0 0 0 0
0 woo wonr woz2 0 wie win wiz 0 weo w21 w2z 0 0 0 0
0 0 0 0 wpo wo1 woa 0 wio wyy wia 0 wsg way Wos 0
0 0 0 0 0 woo w1 w2 0wy win wie 0 wag wan wep

This linear operation takes the input matrix flattened as a 16-dimensional
vector and produces a 4-dimensional vector that is later reshaped as the

2 X 2 output matrix.
V. Mikayelyan Deep Learning December 8, 2020 26 /29

Transposed Convolution (stride=0)

e *e»

V. Mikayelyan Deep Learning December 8, 2020 27 /29

Transposed Convolution (stride=0)

V. Mikayelyan Deep Learning December 8, 2020 27 /29

Transposed Convolution (stride=1)

L

V. Mikayelyan Deep Learning December 8, 2020 28 /29

Transposed Convolution (stride=1)

V. Mikayelyan Deep Learning December 8, 2020 28 /29

input
image |

tile

¥

572 x 572
570 x 570
568 x 568

' 128 128

284
2822

V. Mikayelyan Deep Learni

128 64 64 2

output
> | > A

segmentation

o o o

a2l 9 & 5 map

A2

S EEE

all & 2

256 128

> =»conv 3x3, ReLU
copy and crop

..- ¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1

mber 8, 2020

29/29

	Transformers
	Dilated and Transposed Convolutions

